Rev. Mat. Iberoam. (submitted)

RMILOGO

Tridiagonal kernels and left-invertible operators with
applications to Aluthge transforms

Susmita Das and Jaydeb Sarkar

Abstract. Given scalars a,, (# 0) and by, n > 0, the tridiagonal kernel or band kernel
with bandwidth 1 is the positive definite kernel k£ on the open unit disc D defined by

k(z, w) = i ((an + b,,z)z")((a,, + Enw)w") (z,w € D).

n=0

This defines a reproducing kernel Hilbert space H}. (known as tridiagonal space) of
analytic functions on D with {(a, + bnz)z”};’;’:0 as an orthonormal basis. We con-
sider shift operators M, on H} and prove that M, is left-invertible if and only if
{lan/an+1}n>0 is bounded away from zero. We find that, unlike the case of weighted
shifts, Shimorin’s models for left-invertible operators fail to bring to the foreground
the tridiagonal structure of shifts. In fact, the tridiagonal structure of a kernel k, as
above, is preserved under Shimorin model if and only if bg = 0 or that M, is a weighted
shift. We prove concrete classification results concerning invariance of tridiagonality
of kernels, Shimorin models, and positive operators.

We also develop a computational approach to Aluthge transforms of shifts. Curi-
ously, in contrast to direct kernel space techniques, often Shimorin models fails to
yield tridiagonal Aluthge transforms of shifts defined on tridiagonal spaces.
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1. Introduction

The theory of left-invertible weighted shifts or multiplication operators M, on “diagonal”
reproducing kernel Hilbert spaces is one of the most useful in operator theory, function
theory, and operator algebras (see the classic by Shields [15]). Given a bounded sequence
of positive real numbers @ = {@, },>0, and an orthonormal basis {e, },>0 of an infinite-
dimensional Hilbert space H (complex separable), the operator S, defined by

(1.1) Saen = anenyi (n>0),

is called a weighted shift with weights {a,, },>0. In this case, S, is bounded (S, € B(H)
in short) and ||S,|| = sup,, a,. If the sequence {a,},>0 is bounded away from zero, then
S is a left-invertible but non-invertible operator. Note that the multiplication operator
M on (most of the) diagonal reproducing kernel Hilbert spaces is the function theoretic
counterpart of left-invertible weighted shifts which includes the Dirichlet shift, the Hardy
shift, and the weighted and unweighted Bergman shifts, etc.

The main focus of this article is to study shifts on the “next best” concrete analytic
kernels, namely, tridiagonal kernels. This notion was introduced by Adams and McGuire
[2]in 2001 (also see the motivating paper by Adams, McGuire and Paulsen [3]). However, in
spite of its natural appearance and potential applications, far less attention has been paid to
the use of tridiagonal kernels in the aforementioned subjects. On the other hand, Shimorin
[17] developed the idea of analytic models of left-invertible operators at about the same
time as Adams and McGuire, which has been put forth as a key model for left-invertible
operators by a number of researchers [6,7, 10, 13].

In the present paper we consider the next level of shifts on tridiagonal spaces, namely
left-invertible shifts on tridiagonal spaces. We also discuss the pending and inevitable com-
parisons between Shimorin’s analytic models of left-invertible operators and Adams and
McGuire’s theory of left-invertible shifts on tridiagonal spaces. In particular (and curiously
enough), we find that, unlike the case of weighted shifts, Shimorin models fail to bring to
the foreground the tridiagonal structure of shifts. We resolve this dilemma by presenting a
complete classification of tridiagonal kernels that are preserved under Shimorin models.

We also prove a number of results concerning left-invertible properties of shifts on
tridiagonal spaces, new tridiagonal spaces from the old, classifications of quasinormal
operators, rank-one perturbations of left inverses, a computational approach to Aluthge
transforms of shifts, etc. Again, curiously enough, some of our definite computations in
the setting of tridiagonal kernels verify that the direct reproducing kernel Hilbert space
technique is somewhat more powerful than Shimorin models. We also provide a family of
instructive examples and supporting counterexamples.

To demonstrate the main contribution of this paper, it is now necessary to disambiguate
central concepts. Needless to say, the theory of reproducing kernel Hilbert spaces will play
a central role in this paper. Briefly stated, the essential idea of reproducing kernel Hilbert
space [5] is to single out the role of positive definiteness of inner products, multipliers and
bounded point evaluations of function Hilbert spaces. We denote by D = {z € C : |z] < 1}
the open unit disc in C. Let & be a Hilbert space. A function k : D X D — B(&) is called
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an analytic kernel if k is positive definite, that is,

n

Z (k(ziszj)nj.miye 2 0,

ij=1

for all {z;}?, € D, {g;}!., € & and n € N, and k analytic in the first variable. In this
case there exists a Hilbert space Hy, which we call analytic reproducing kernel Hilbert
space (analytic Hilbert space, in short), of &-valued analytic functions on D such that
{k(-,w)n:weD,n e &} is atotal set in Hy with the reproducing property (f, k(-,w)n)¢;, =
(f(w),n)g forall f € Hy,w €D, and 5 € E. The shift operator on H; is the multiplication
operator M, (which will be assumed to be bounded) defined by

(M f)(w) =wf(w)  (f € Hi,weD).

Note that there exist Cyun € B(E) such that k(z, w) = X0 o Cun2™ 0", z,w € D. We
say that Hy, is a diagonal reproducing kernel Hilbert space (and k is a diagonal kernel)
if Cpyyy = 0 for all |m — n| > 1. We say that k is a tridiagonal kernel (or band kernel with
bandwidth 1) if

(1.2) Cun=0 (lm = n| = 2).

In this case, we say that Hy, is a tridiagonal space. Now let {a, },>0 and {b, },>0 be a
sequences of scalars. In this paper, we will always assume that a,, # 0, for all n > 0. Set

fu(2) = (an + bn2)7" (n>0).

Assume that { f;, },,>0 is an orthonormal basis of an analytic Hilbert space Hy. Then Hj is
a tridiagonal space, as the well known fact from the reproducing kernel theory implies that

(1.3) kzw) =) fu(@fa@)  (zweD)
n=0

We now turn to Shimorin’s analytic model of left-invertible operators [17], which says
thatif 7' € B(H) is left-invertible and analytic (thatis, N> 7" H = {0}), then there exists an
analytic Hilbert space Hj (€ O(D,“W)) such that T and M, on Hy, are unitarily equivalent,
where W = kerT* = H © TH is the wandering subspace of T, and O(D, ‘W) is the set
of ‘W-valued analytic functions on D. The Shimorin kernel k is explicit (see (2.11)) which
involves the Shimorin left inverse

(1.4) Ly = (T°T)"'T*,

of T. The representation of the Shimorin kernel is useful in studying wandering subspaces
of invariant subspaces of weighted shifts [16, 17]. See [9, Chapter 6] and [ 14] in the context
of the wandering subspace problem, and [13] and the extensive list of references therein
for recent developments and implementations of Shimorin models.

We prove the following set of results: In Section 2, we present basic properties and
constructions of tridiagonal spaces and Shimorin models. We introduce the core concept
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of this paper: An analytic tridiagonal kernel is a scalar kernel k as in (1.3) such that C[z] C
H., and

sup
n>0

<oo and limsup
n>0

<1,

an+1 an+1

(which ensures that M, on Hj is bounded) and {| - |}n>0 is bounded away from zero.
An analytic Hilbert space is called analytic trtdlagonal space if the kernel function is an
analytic tridiagonal kernel. In Proposition 2.7, we prove (a well-known fact) that weighted
shifts behave well under Shimorin’s analytic models.

In Section 3, we prove that {| ai’il [}n>0 is bounded away is equivalent to the fact that
M on Hy, is left-invertible (see Theorems 3.2 and 3.5). We compute representations of
Shimorin left inverses of shifts on analytic tridiagonal spaces (see Proposition 3.1 and
Theorem 3.4).

Section 4 starts with Example 4.1, which shows that Shimorin kernels do not necessarily
preserve the tridiagonal structure of kernels. We are nevertheless able to prove in Theorem
4.2 that it does for a kernel k of the form (1.3) if and only if M, on Hj is a weighted shift
or

bp=0

The main result of Section 5 classifies positive operators P on a tridiagonal space H}
such that K (z,w) := (Pk(-,w), k(-, 2))¢, defines a tridiagonal kernel on ID. More specific-
ally, if
[coo cor coa co3

Col €11 C12 €13
P=|cpp Cia ¢ ¢33 ",

Cco3 Ci13 C23 €33

denote the matrix representation of P with respect to the basis {(an +b,2)7" }ns0 of Hy,

then the kernel X is tridiagonal if and only if ¢g,, = (-1)"~ lb;2 b;’ Leor, n = 2, and ¢y =
(=1)n—m= l%cm m+1 forall 1 < m < n—2 (see Theorem 5.2).

Section 6 deals with quasinormal shifts. Suppose M, is non-normal on an analytic tri-
diagonal space H . Denote by Pc, the orthogonal projection of Hy onto Cfy. In Theorem
6.2, we prove that M, is quasinormal if and only if there exists » > 0 such that

M:Mz — MZM; = }"Pcfo.

In Section 7, we compute Aluthge transforms of shifts. The notion of Aluthge trans-
forms was introduced by Aluthge [4] in his study of p-hyponormal operators. Let H be
a Hilbert space, T € B(H), and let T = U|T| be the polar decomposition of T. Here,
and throughout this note, |T| = (T*T)% and U is the unique partial isometry such that
ker U = kerT. The Aluthge transform of T is the bounded linear operator

[ = |T|2U|T)?.
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The Aluthge transform of 7 turns 7 into a more “normal” operator while keeping intact
the basic spectral properties of 7 [11]. Evidently, the main difficulty associated with T is
to compute or represent the positive part |T'|. This is certainly not true for weighted shifts:
Since |S,| = diag(@o, a1, @2, . . .) (cf. Proposition 2.7), it follows that S, = S a» where

Va = {Vaoar, Vaias, . . .}

Therefore, S, is also a weighted shift, namely S Ja- Here we consider the next natural step:
computation of M,, where M, is a left-invertible shift on some analytic Hilbert space Hj.
We prove that M, is also a left-invertible shift on some analytic Hilbert space Hj. The
kernel & can be obtained either via Shimorin’s model (see Theorem 7.3), which we call the
Shimorin-Aluthge kernel of M, or by a direct approach (see Theorem 7.7), which we call the
standard Aluthge kernel of M. In Theorem 7.5, we prove that if C[z] € H) € O(D), then
Ly, and Ly;_are similar up to the perturbation of an operator of rank at most one. Moreover,
in this setting Shimorin-Aluthge kernels are somewhat more explicit (see Theorem 7.6).

In Section 8 we consider truncated spaces (subclass of analytic tridiagonal spaces)
in order to pinpoint more definite results, instructive examples, and counterexamples. A
truncated space of order r(> 2) is an analytic tridiagonal space Hj with k as in (1.3) such
that

b, =0 (n#2,3,...,1).

The computational advantage of a truncated space is that it annihilate a rank one operator
(see (7.3)) associated with Ly of the shift M,. As a result, in this case we are able to
prove a complete classification of tridiagonal Shimorin-Aluthge kernels of shifts. This is
the content of Theorem 8.3. Curiously, the classification criterion of Theorem 8.3 is also
the classification criterion of tridiagonality of standard Aluthge kernels (see Corollary 8.4).

In Section 9, we comment on the assumptions in the definition of truncated kernels.
We point out, at the other extreme, if one consider a (non-truncated) tridiagonal kernel k
with

b0=b1=10rb0:1,

and all other b;’s are equal to 0O, then the standard Aluthge kernel of M, is a tridiagonal
but the Shimorin-Aluthge kernel of M, is not. This is the main content of Example 9.1.
We conclude the paper by two observations concerning tridiagonal structures of standard
Aluthge kernels and kernels of the form (z, w) — (|M,| 2k (-, w), k(-, 2)).

We remark that some of the observations outlined in Sections 7 and 8 are based on
several more general results that have an independent interest in broader operator theory
and function theoretic contexts.

2. Preparatory results and examples

In this section, we set up some definitions, collect some known facts about tridiagonal
reproducing kernel Hilbert spaces and Shimorin analytic models, and observe some auxil-
iary results which are needed throughout the paper. We also explain the idea of Shimorin
with the example of diagonal kernels (or equivalently, weighted shifts).
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We start with tridiagonal spaces. Here we avoid finer technicalities [2] and introduce
only the necessary features of tridiagonal spaces. Let & be a Hilbert space, k be a 8(E)-
valued analytic kernel on D, and let Hy, € O (D, E) be the corresponding reproducing kernel
Hilbert space. Then there exists a sequence {Ciun}m.n>0 € B(E) such that

kzw)= Y Cud"d"  (zweD).

m,n=0

Recall that (see (1.2)) k is a tridiagonal kernel if C,,;, = 0, |m — n| > 2. We say that H is
a tridiagonal space if k is tridiagonal. We now single out two natural tridiagonal spaces.

DeriNtTION 2.1, A tridiagonal space Hy, is called semi-analytic tridiagonal space if C[z] C
H € O(D), and there exist scalars {ay, }n>0 and {by, }n>0, an # 0 for all n > 0, such that

n . b
(2.1) sup 9n | <o and lim sup |——| < 1,
n>0"'An+l n>0 'Qn+l
and { fn }n>0 is an orthonormal basis of Hy, where
(2.2) fa(2) = (an + bnz)" (n > 0).

Note that the conditions in (2.1) ensure that the shift M, is a bounded linear operator
on Hj, [2, Theorem 5]. We refer the reader to [2, Theorem 2] on the containment of poly-
nomials.

DErINITION 2.2. A semi-analytic tridiagonal space Hy. is said to be analytic tridiagonal

space if the sequence {| ua'i 1 |}ns0 is bounded away from zero, that is, there exists € > 0
such that

Qan
(2.3) e > € (n=0).

n+

A scalar kernel k is called semi-analytic (analytic) tridiagonal kernel if the corres-
ponding reproducing kernel Hilbert space Hj, is a semi-analytic (an analytic) tridiagonal
space.

It is important to note that (2.3) is essential for left invertibility of M,. As we will see
in Theorem 3.5, if H; (2 C[z]) is a tridiagonal space corresponding to the orthonormal
basis {f,}n>0 as in (2.2), and if {a, },>0 and {b, }.>0 satisfies the conditions in (2.1),
then condition (2.3) is equivalent to the left invertibility of M, on Hj. Also recall that the
weighted shift S, with weights {@,, },>0 (see (1.1)) is bounded if and only if sup,,.o @, <
oo, In this case, S, is left-invertible if and only if {a},},>0 is bounded away from zero
(cf. Proposition 2.7). By translating this into the setting of analytic Hilbert spaces [15,
Proposition 7], it is clear that the conditions in Definition 2.2 are natural. For instance, if
b, =0,n > 0, then (2.3) is a necessary and sufficient condition for left invertibility of shifts
on diagonal kernels.

Suppose k is a semi-analytic tridiagonal kernel. Note that k(z, w) = 37" fn(2) fu(w)
(see (1.3)). Now fix n > 0, and write 2" = 3. _ @ fim for some @, € C, m > 0. Then

(o]
7" = apap + Z(am—lbm—l + Apam)7".
m=1
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Thus comparing coefficients, we have ¢ = @) =--- = a,—; =0, and @, = al as a;’s are
n
non-zero scalars. Since
Unij1bnyj-1 + Anyjanyj =0,

. n+j—1bn+
it follows that @+ = % and thus
n+j
(—l)j bnbn+l "'bn+j—1 .
Apyj = (j=1).
dap Ap+l *°Apyj
This implies

m 1
j=0 n+]

)fn+m (n Z O)s
0 al’L+J+]

24) Z( 1)’"(
m=0

where H;':lo Xp+j = 1. With this, we now proceed to compute M [2, Section 3]. Letn > 0.
Then M, f, = a, "' + b,z"** implies that

an anbn+1 +2 an bn an bn+l +2
M. fn = - )" = Snr1 +ansa( - —)",
Ap+ An+1 An+1 Ap+2  dp+l AQp+2
that is
2.5 M _ an n+2
(2.5) oJn = —— far1 + ni2caz
an+1
where
a b b +1
(2.6) cnz—"(—"—”—) (n>0).
an+2 An+l

Then (2.4) implies that

QD Mg () e Y 1)’"(M)fn+2+m (n>0),
m=0

m
An+l H] =0 9n+3+j

and hence, with respect to the orthonormal basis { f;, },,>0, we have (also see [2, Page 729])

0 0 0 0
ag

% 0 0 0
Co Z—; 0 0

—C()bz an
(2.8) (M) =] —o c1 o 0
Cob2b3 —C1 b3 ca as
aszaqg ag ayg
—cobab3by  c1biby  —coby c
aszdasds agds as 3

The matrix representation of the conjugate of M, is going to be useful in what follows:
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r 7] _ —Gob —éobab

03 % & “aa

00 & g Gk
an a4
(2.9) [M]=]0 0 O a—g &
0 0 0 0 o

In particular, M, is a weighted shift if and only if ¢,, = 0 for all n > 0. Also, by (2.6), we
have c,, = 0 if and only if Z”—:‘l = bu , n > 0. Therefore, we have the following observation:

an
LemMma 2.3. The shift M, on a semi-analytic tridiagonal space Hy is a weighted shift
corresponding to the basis { f,}n>0 if and only if ¢;, = 0 for all n > 0, or, equivalently,
{Z_:}"ZO is a constant sequence.

The proof of the following lemma uses the assumption that C[z] € H.

Lemma 2.4. If Hy is a semi-analytic tridiagonal space, then ker M = C fo.

Proof. Clearly, (2.9) implies that fy € ker M. On the other hand, from C[z] C H; we
deduce that f,, = M, (a,z" ' + b,z") € ranM,, for all n > 1, and hence span{f, :n > 1} C
ranM. The result now follows from the fact that C fy = (span{f,, : n > 1})* 2 ker M;. B

Now we briefly describe the construction of Shimorin’s analytic models of left-invertible
operators. Let H be a Hilbert space, and let T € B(H). We say that T is left-invertible if
there exists X € B(H) such that XT = I4. It is easy to check that this equivalently means
that 7' is bounded below, which is also equivalent to the invertibility of 7*T. Following
Shimorin, a bounded linear operator X € B(H) is analytic if

00

(2.10) () X"H = {0}

n=0

Note that from the viewpoint of analytic Hilbert spaces, shifts are always analytic. Indeed,
let Hy € O(Q, E), where Q C C is a domain, and suppose the shift M, is bounded on Hj.
If f € M, M} Hy, then for each n > 0, there exists g, € Hy such that f = z"g,. Since Q
is a domain and f is analytic on Q, we see that f = 0, that is, (), M} H = {0}.

Now let T € B(H) be abounded below operator. We call Ly := (T*T)~'T* the Shimorin
left inverse, to distinguish it from other left inverses of T' (see (1.4)). Set

W=kerT*=HoOTH,

andQ={z€C:|z| < r(i—T)}, where r(L7) is the spectral radius of Ly. Then

2.11) kr(z,w) = Pay(I —zLy) "I = dLy) gy (zw e Q),
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defines a B(“W)-valued analytic kernel k7 : Q x Q — B(W), which we call the Shimorin
kernel of T (see [17, Corollary 2.14]). We lose no generality by assuming, as we shall do,
that Q = D. If, in addition, 7 is analytic, then the unitary U : H — H defined by

)

(2.12) WUf)(2) = ) (PwLif)Z"  (feH,zeD),

n=0
satisfies UT = M, U [17]. More precisely, we have the following result:

TueoreM 2.5 ([17]). Let T € B(H) be an analytic left-invertible operator. Then T on H
and M on Hy, are unitarily equivalent.

Denote by P4y the orthogonal projection of H onto ‘W = ker T*. It follows that
(2.13) Pyw =1y—-TLrt,

This plays an important role (in the sense of Wold decomposition of left-invertible operat-
ors) in the proof of the above theorem. The following equality will be very useful in what
follows.

Lemma 2.6. If T is a left-invertible operator on H, then LtL} = |T|~2.
Proof. This follows from the fact that Ly L}, = (r*n)~'r*r(r*1)"' = (1*17)~ . [ |

In the case of left-invertible weighted shifts S, (see (1.1)), it is known that the shift M,
on Hy, ~ corresponding to the Shimorin kernel ks, is also a weighted shift (for instance,
see [13, Example 5.2] in the context of bilateral weighted shifts). Nonetheless, we sketch
the proof here for the sake of completeness.

ProposITION 2.7. Let S, be the weighted shift with weights {ay, }n>0. If {@n }n>0 is bounded
away from zero, then S, is left-invertible, and the Shimorin kernel ks, is diagonal.

Proof. Let {e, }n>0 be an orthonormal basis of a Hilbert space H, and let S e, = @, €41
foralln > 0. Observe that S%,e,, = @n_1€,-1,n > 1, and S}, e9 = 0. Then W =ker S}, = Cey,
and

StSaen = a,zlen (n=0).

Since S%,S is a diagonal operator and {a,},>0 is bounded away from zero, it follows
that S, is invertible, and hence S, is left-invertible. Then the Shimorin left inverse
Ls, := (55,84)71Sz, is given by

0 itn=0
2.14 L =
@19 Sa { e,y ifn> 1.

Qn

Therefore, Ls,, is the backward shift, and

0 ifm>n
(2.15) L e,=1 —L—e¢ ifm=n

@ Qo Ap-1

men_m ifm < n,
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for all m > 1. Moreover
1

xm
Lg en= €nims
An@n+l * Anym-1

forall n > 0 and m > 1. In particular
L"eg= ——————ey  (m21),
i Qoq - -1

and thus, for each (m, n) # (0,0), we have clearly

ifm#n

0
PywL? L ey =
w Sa™Sa 0 { (ao,,,l 71)260 lfm =n.

This immediately gives

ks, (zw) = > (PwLi LY |w)(zd)"  (zweD),
n=0

where ‘W = Ce. In particular, the Shimorin kernel ks, is a diagonal kernel. Finally, identi-

fying ‘W with C and setting §8,, = %, n > 1, we get

-y

ks, (zow) =1+ Z ﬂiz(zu‘))" (z,w € D).
n=11"n

Notice in the above, the Shimorin left inverse Lg,, is the backward shift corresponding
to the weight sequence {QL},,Z(), that is,

0 & 0 0
00 4 0
Ls,=1{0 0 0 o
00 0 0

In the setting of Proposition 2.7, we now turn to the unitary map U : H — Hj_, where
His, € O(D, W), and

W) (@) =) (PwLE 2",
n=0
forall f € H and z € D (see (2.12)). Set f, = Ue,, n = 0. Since ‘W = Cey, (2.14) yields
fo =Uep = Pyeg = ep. On the other hand, if n > 1, then (2.15) implies that
1

B €0
0 otherwise,

ifm=n
P‘WLglaen 2{
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and hence f, = ﬁiz"eo. Therefore {eg} U {ﬁiz"eo}nzl is the orthonormal basis of Hj
corresponding to U. Moreover, for each n > 1, we have
1 1 1 1
M (—z2"eq) = —2""eg = an——2""ep = an(

ﬁn IBn ﬁn+1 ﬁn+1

and hence M on Hyg  is also a weighted shift with the same weights {@, }n>0.

Zn+160)’

3. Tridiagonal spaces and left-invertibility

The main contribution of this section is the left invertibility and representations of Shimorin
left inverses of shifts on tridiagonal reproducing kernel Hilbert spaces. Recall that the
conditions in (2.1) ensures that the shift M, is bounded on the semi-analytic tridiagonal
space Hj. Here we use the remaining condition (2.3) to prove that M, is left-invertible.
Before we state and prove the result, we need to construct a specific bounded linear
operator. The choice of this operator is not accidental, as we will see in Theorem 3.4 that
it is nothing but the Shimorin left inverse of M. For each n > 1, set
3.1 dy = bu _ bn-i

ap  dp-1

ProposiTioN 3.1. Let k be an analytic tridiagonal kernel corresponding to the orthonormal
basis { fn}n>0, where f,(z) = (an + b;z)7", n > 0. Then the linear operator L represented
by

L 0 0 0

0 d @ 0 0
-— 0 4 dy 2 0

0 Am 2R o4 g

0 “QuEhk auk SgP A

with respect to the orthonormal basis { f,, }n>0 defines a bounded linear operator on H.

Proof. For each n > 1, we have clearly d,, = bu _ bpzi — dnst bu _ _an bn-i gnd hence
an Aan-1 an dp+l Ap-1 Aan
a b a b, _
|dn| < n+l n n n—1 )
anp dpyl ap-11 ap
Since {| a‘j:l |}n>0 is bounded away from zero (see (2.3)), we have that sup,,. |“6’;;‘ | < oo.

This and the second assumption then imply that {d,,} is a bounded sequence.

Let S denote the matrix obtained from [L] by deleting all but the superdiagonal elements
of [L]. Similarly, Ly denote the matrix obtained from [L] by deleting all but the diagonal
elements of [L], and in general, assume that L; denote the matrix obtained from [L] by
deleting all but the i-th subdiagonal of [L],i =0,1,2.... Since

L:S+ZL,~,

i>0
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it clearly suffices to prove that S and {L; };>¢ are bounded, and S + ;. L; is absolutely con-

vergent. Note that | S|| = sup,,. | “2£L| < co. Moreover, our assumption lim sup, . |ab—’i1| <1
= n = n

implies that there exist » < 1 and ng € N such that

by
<r (n = ng).
An+l
Set
by
M:sup{ ,|dn|}.
n>1 Ydn+l
Then |L;|| < M™! foralli=0,...,ng, and
(Ll < M= (i > ),

from which it follows that

An+1
111+ > IZill = sup|==2 |+ > lILll+ D Ll
i>0 nz0" “n 0<i<ny i>ng+1
a ,
< sup[ 2ty B ||Ll-||+M”°+1( D r’_"o)
nz0 n 0<i<ng i>nop+l
a r
<sup ||+ > (ILill+ M,
nz0" “n 0<i<no -r
and completes the proof of the theorem. [ ]

We are now ready to prove that M is left-invertible.

THEOREM 3.2. In the setting of Proposition 3.1, we have LM, = I, .

Proof. We consider the matrix representations of M, and L as in (2.8) and Proposition 3.1,
respectively. Let [L][M;] = (¥mn)m,n>0. Clearly it suffices to prove that @, = Opp. It is
easy to see that @, j,+x = 0 for all £ > 1. Now by (2.6) and (3.1), we have

Aapn

3.2) cn=——"dpy  (n20).

aAn+2

Note that the n-th column, n > 0, of [M,] is the transpose of

7cn’

an Cnbniz - _2Cnbn+2"‘bm—l - _1Cnbn+2"‘bm
(0, ,0, - e, ()M — — (-] ——— ],
~—— dn+l ap+3 Ap+3 - Am An+3 - Amsl

n+l

and the m-th row, m > 0, of [L] is given by

P

(O (_l)m_ldlbl"'bm—l (_l)m—2d2b2"'bm—l (_l)m_3d3b3"'bm_1
> ar---am 2 az- - am ) —a4...am
1 by N

2l d, 20,0, ).

am am

cey
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Now, if n < (m — 2), then the a,,, (the (m, n)-th entry of [L][M,]) is given by

A = (—l)m_n_l dps1bps1 - b1 ay n (—l)m_n_2 dps2bpsr - b1 .

Ap+2 " Am A+l Ap+3 = Am
n3dns3bpsz - by bni2 dp-1bm-1 e
b (o dusbne bt budy Dty gy
Ap+d " Am an+3 m
buy2 - bm—s nea bnia bt ama ne bu2--+b
R e B P e NN N P L Sl U
apy3 - Am-1 Apy3 - - Aam am Apy3 - Amdm+l

and hence, using (3.2), we obtain

nbn bm_ o n dn bn bm_
Tmn = (_1)m_n_1dn+1¥+(_l)m n 2(_aa doet) +2bn42 L

Ap+1dn+2 *° - Am n+2 Ap+3 - Am

(1= g (22 (G2l Dty
a a

n+2 n+3 Ap+d - Am
dm—lbn+2 co bm—l "

Aap
et (—1)m_"_2(—a dn+1)

n+2 p+3 " dm
-n-2,_ Yn dmbnsz - bm-1 —n—1 ap bps2 by
(=)™ (= ——dn+1) + (=D (—dpr)) (———)
an+2 Anp+3 " Am an+2 Anp+3 Ay
—n—-1 Anbpi1 - b1 apbpyr - by Anbpiz -+ b1
= (=™ dn+l( + dns2 + dnsi3+
Ap+1dp+2 *° Am Ap+2an+3 *° " Am Ap+2an+3 *° " Am
Anbpiz -+ by Anbpiy -+ by bz -+ by
GO Ome g dp — .
Api2dn+3 - Ay, Ap2Qne3 **Am Ap20n43 - Ay
—n—-1 Anbpsa - b1 (bust bm
= (_1)m " dn+l +(dn+2+dn+3+"'+dm—l+dm)__ .
p20np+3 * - Am \ A+l am

Recall from (3.1) that d,, = Z— - 2—1 n > 1. Then

n = (_l)m—n—ldn+] Apbniz -+ by ((bn+1 _ b_m) + (Z_’" _ bt )) -0.

Ap20an43 - Am Ap+l am m An+l

For the case n = m — 1, we have

am-1 Am+1 Am-1 Am+1 am-1
Umm-1 = dm( )+ - (em-1) = ( Ydm + - (= dm) =0,
am am am am Am+1
and finally, @, = (%)(a“—"ll) =1 completes the proof. [ ]

In view of Theorem 3.2, let us point out, in particular (see the discussion following
(2.10)), that shifts on analytic tridiagonal spaces are always analytic:

ProrosiTioN3.3. Ifk is an analytic tridiagonal kernel, then M, is an analytic left-invertible
operator on H.

Now let Hj, be an analytic tridiagonal space. Our aim is to compute the Shimorin left
inverse Ly, = (M;MZ)"M; of M, on Hj.. What we prove in fact is that L in Proposition
3.1 is the Shimorin left inverse of M. First note that

(3.3) Lyz" =7"" (n>1).
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Indeed
Ly2" = (MIM,) ' M;M 2"
= (MIM) (MM )"

Therefore, Ly, is the backward shift on H. (awell known fact about Shimorin left inverses).
On the other hand, by Lemma 2.4 we have

Lu.fo= (MM:)™'M; fo =0
and hence Ly, fo = 0, which in particular yields

b
(3.4) Ly 1=-=2.
ao
Let n > 1. Using (3.1), we have Las_fy, = Ly (an2" + bn2"') = a2~ + b,2", which
implies
- n anby,- n a n
“ (an—]zn l"'bn—lz )+(bn_ e 1)Z = “ fn—1+dnanz s

n—1 n-1 an-1

and hence L. fp = 72 fu-1 + dn(an2" + bp2"") = dpbn2"™*'. By (2.4), we have

nfn_ (Z( l)m ,0 "+J fn+1+m)'

_0 An+l+j

LM;fn =

Lszn -

This is precisely the left inverse L of M in Proposition 3.1. Whence the next statement:

TueoreM 3.4. Let Hy be an analytic tridiagonal space. If L is as in Proposition 3.1, then
the Shimorin left inverse Ly, of M is given by Ly, = L. In particular, Ly_ fo = 0, and

wf—d (Z( ML LR fustem) (=),

j -0 An+l+j

dapn
Lszn =
ap-1

where d,, = a—" - a” L foralln > 1. Moreover, the matrix representation of Ly, with respect
t0 the orthonormal basis {fn}tnso0 is given by

r a
0o @ 0 0 0
0 d; Z—f 0 0

—db, a3
T s
MZ‘ 0 d1 b] b2 —d2b2 d ﬂ
aajz as 3 as
—dibibybs  dabobs  —d3bs

0 azazday aszay ay d4

Next we verify that the bounded away assumption of {| a“'il

necessary condition for left-invertible shifts.

[}ns0 in (2.3) is also a
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THEOREM 3.5. Let Hy be a semi-analytic tridiagonal space corresponding to the orthonor-
mal basis { f, }n>0, where f,,(z) = (a, + b,2)7", n > 0. Then M, is left-invertible if and only
if {| ai” [}ns0 is bounded away from zero, or equivalently, Hy is an analytic tridiagonal

+1

space.

Proof. In view of Theorem 3.2 we only need to prove the necessary part. Consider the
Shimorin left inverse Ly, = (M;MZ)‘IM;‘. Using the fact that C[z] € Hy, one can show,
along the similar line of computation preceding Theorem 3.4 (note that, by assumption,
Ly, is bounded), that the matrix representation of Lz with respect to the orthonormal
basis { f, }n>0 is precisely given by the one in Theorem 3.4. Then for each n > 0, we have

* - * * - * a ]
I(MIM) ™ Ml g(r) = |(MEM2) ™" M fullgg, = | =],
n
which implies that
a, 1
Z * -1 * >
aner! = |(MZM2) ™ Mz 8(14)
and hence the sequence is bounded away from zero. [ ]

4. Tridiagonal Shimorin models

As emphasized already in Proposition 2.7 that if k is a diagonal kernel, then k3, is also
a diagonal kernel. However, as we will see in the example below, Shimorin kernels are
not compatible with tridiagonal kernels. This consequently motivates one to ask: How
to determine whether or not the Shimorin kernel kps, of a tridiagonal kernel k is also
tridiagonal? We have a complete answer to this question: kjy_ is tridiagonal if and only if
bo = 0 or that M, is a weighted shift on Hj. This is the main content of this section.

ExampLE4.1. Leta, =1 foralln >0, by = % and let b, =0 for alln > 1. Let Hy. denote
the analytic tridiagonal space corresponding to the orthonormal basis { f, }n>0, where
fn = (an + by2)7" foralln > 0. Since fo =1+ %z and f, = 7" foralln > 1, by (2.8), we
have

0 0 0 0
1 00 0
[M]=|5 1 0 0
001 0
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By Theorem 3.4, the Shimorin left inverse Ly, = (M;MZ)_IM;‘ is given by
0 1 0 0 O
1 0

0o 0
Ly.=[0 0 0 1 0
00 00 1

Recall, in this case, that W = Cfy. It is easy to check that Ly, fi = fo — %fl, Ly, fo=fi,
Ly fi=~3fi+frand Ly, f> = fs. Then

Ly fo= Sk fitLly o= hi-sh+

and hence Pay Ly, Lﬁ_ Jfo= %Prw(Lszl), as PayLy, fj =0 forall j # 1. Consequently

. 1
PawLu.Ly; fo= 7/0#0.
which implies that the Shimorin kernel kyy_, as defined in (2.11), is not a tridiagonal kernel.

Throughout this section, H} will be an analytic tridiagonal space corresponding to the
orthonormal basis { f;, },>0, Where f,,(z) = (a, + b,z7)7", n > 0. Recall that the Shimorin
kernel kps, : D x D — B(W) is given by (see (2.11) and also Theorem 2.5)

knt. (z,w) = Poy(I —zLp) ' (I = 0Ly ) w  (z,w e D).

Here, of course, ‘W = Cf, the one-dimensional space generated by the vector fy. So one
may regard ks, as a scalar kernel. We are now ready for the main result of this section.

THEOREM 4.2. The Shimorin kernel kyy_ of M is tridiagonal if and only if M, on Hy is a
weighted shift or
bo =0.

Proof. We split the proof into several steps.
Step 1: We first denote Lys, = L and

Xinn = P’WLmL*n|’W (m,n > 0),

for simplicity. First observe that Theorem 3.4 implies that L™ fo = 0, m > 1, and hence,
Xno=0= X:nO = Xom, for all m > 1. Then the formal matrix representation of the Shimorin
kernel kj;_ is given by

Iw 0 0 0

@.1) [k ]=| 0 Xip X2 Xo3
) 0 X'\ X: Xs
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Clearly, in view of the above, kjy,_ is tridiagonal if and only if X,,, fo = 0 for all m,n # 0
and |m —n| > 2.

Step 2: In this step we aim to compute matrix representations of L” and L*P, p > 1, with
respect to the orthonormal basis { f;; },>0. The matrix representation of [ L] in Theorem 3.4
is instructive. It also follows that

[0 0 0 0 0
ﬂ Cz *&161 621511;2 —Jlb_15253
ap 1 ar aas arazds
1 as asdy
a 7 -dsb
4.2) (L1=10 0 Z d3 ===
0 O 0 Z—;‘ dy
a
0 0 0 0 a_i

Here we redo the construction taking into account the general p > 1, and proceed as in the
proof of Theorem 3.4. However, the proof is by no means the same and the general case is
quite involved. Assume that n > 1. We need to consider two cases: n > p andn < p — 1.
Suppose n > p. By (3.3) and (3.4), we have

L? f, =a,LP7" + b, LP7"" = a,7" P + b, 7" P!,

which implies

a a a
LP fy=—"(an_p?" P +bp_pZ" P (by — —" by )P = f L d P P
an—p an_P an—p
where
a
4.3) aP = by - —"b,,  (n2p).
n-p
Hence by (2.4)
(p)
a d bn_pt1 bu_pi1bp_p>
LPfy= S f 4 "—(fn_,,+1 St e )
n-p an—-p+1 Ap—p+2 Ap—p+20n—p+3
that is
(p) & m-1p .
a d i=0 Un—p+j+1
Lpfnz L fn7p+ L Z(—l)m(in_l—)fnfp+m+l7
An-p Cln—p+1m=0 =0 An-p+j+2

forall n > p. Here and in what follows, we define [ Loxj=1
We now let p = 1 and n = 1. Then by Theorem 3.4, we have

dibi1by
anas

@4 Lfi= S hordifis (<N (T
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Finally, let 1 <n < p — 1. Then p > 1, and again by (3.3) and (3.4), we have

_ o _bO p—n _bO p—n—1
LP f = LP(anz" + bp2™) = a, LP "1 + b, LP™"" '] = a,,(—) + bn(—) ,
ap ap
b \P " b, by
P - 0 n _ 20
and hence L? f, an( % ) [an ao]' We set
bn bO
4.5) Bn=——-— (n>1),
dan ao
and
_ —n-1
) _ bo\P~"
(4.6) L =ay B (I1<n<p-1).
ao
Then LP £, = {7’ and (2.4) implies that
(p) & 7',
L2 (f) =B 3 0" () S
ao " ta;g
m=0 j=0 %J
forall1 <n < p—1.Then
_ ® -
By a
° o © ° °
B bo dz as
0 - aopag a a_l 0
@ @) @)
4.7) [12] = 0 B boby 4 b d} a i
agalaz 20102 ag a%
0 _BPbobiby  dPbib,  dPby d)
apajazas ajazas azas as
and in general, for each p > 2, we have
(4.8)
I (») (p) (P
0 B B e By ap 0 0
ap ap (ao) ao
r
0 _,Bl(mbo _ﬂ;p)bo o _Bp—lbo d,()m ap+l 0
apai apai ( ?Oal aj ?1)
r r
[LP1=|y Ao B bobi Bk aPh d g
apaay apaaz apaaz ajaz az az
o _Bbobib: B bobi b, B\ bobiby  dP b,  dl)br  dil)
- apajazas - apajazas N apajazas ajazas - axas as
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Hence, for each p > 2, we have

0 0 0 0
B _BVb BB B bbb
aop aopay aopa|az dpa|aas
B BPby B boby By bobibs
aop apai apaax apaaas
p ﬁ—,(,p,)] ﬁ_l(fi)] bo B;,p)l bob) B 3(P) b05152
(4.9) [L ]= ao T Tapa dpai s apaiaas
ap awy a4 by aP bibs
ao ai 6(116;2 al?lz)m
— P r
0 Ap+l dp+1 dp+1
ap as aas
— d(P)
0 0 Ap+2 “p+2
ar as

Step 3: We now identify condition on the sequence {f3,, (n+2) }n>1 implied by the requirement
that X, m+2 = 0, m > 1. Before proceeding further, we record here the following crucial

observation: Suppose ﬁ,(,p ) = 0 for some p and n such that 1 < n < p — 1. Then by (4.6),

we have
(4.10) D=0  (g2p).

Now assume m > 1. The matrix representation in (4.9) implies

* ] o n —
@i L= — (B L+ B ok B et + s ).
aop

Observe that, by Theorem 3.4, we have

Ay ifi=1
PavL(f) =14 @
wlif) {o ifi# 1.
Let us now assume that m > 2. Then (4.8) implies
B
“—fo ifl<i<m-1
me ey _ m o
(4.12) PayL™(fi) = C;—Ofo ifi=m
0 ifi >m+1.

Since Xy ms2 = Pay L™ L**2|qy, this yields

(4.13) X meafo = P@W%W+$M%m BB+ B ) fo

In particular, if m = 1, then we have

Xisso= 3 (B ) o
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and hence X3 = 0 if and only if ,6’(3) 0. By (4.13), applied with m = 2 we have

Xoufo = 1o lz(ﬁf"ﬁ(” + BV a) fo.

Assume that ﬁ?) = 0. By (4.10), we have ﬁl = 0, and, consequently

5(4) a2
Xoafo = §>Wf0-

Hence we obtain X4 = 0 if and only if ,8(4) 0. Therefore, if Xy m42 =0 forallm > 1,

then by induction, it follows that Bf,,mﬂ)

the above computation.
Thus we have proved: X,,, m+2 = 0 for all m > 1 if and only if,B,(,,mﬂ) =0forallm > 1.

Step 4: Our aim is to prove the following claim: Suppose X; ;.0 =0 foralli=1,...,m,
andm > 1. Then Xy, =0foralln=m+3,m+4,...,andm > 1.

To this end, let n = m + j and j > 3. Then the matrix representation in (4.9) (or the equality
(4.11)) implies

=0 for all m > 1. The converse also follows from

* l H\n Hln H\ln -
L™ fo= %(ﬂf it B b+ B ot + anf),

and then

PwLL" fy = (5 Zﬁ(")P L™(f)+ PwL",

B WP L™ (f),

51~
_Ms ;

since Py L™ f; = 0, i > m, which follows from the matrix representation of L™ in (4.8).
Hence by (4.12) (or directly from (4.8)), we have

P(WLmL*nfO | |2 (ﬂ(n)ﬁ(M) +,8§n)ﬁ(m) +ﬁ(n)]ﬁ(m) +a ﬁ(n))fo
Now note that X; ;12 =0, thatis,ﬁ}”z) =0,i=1,...,m,byassumption. Sincei +2 <m + j
foralli=1,...,m,by (4.10), we have

B =p" =0 (i=1,...,m).
Hence Py L™ L™ fy = 0, thatis, X, m+i = 0,7 = 3,4, ..., which proves the claim.

Step 5: So far all we have proved is that X,,,,, = 0 for all |m — n| > 2 if and only ifﬁ,(nmz) =0
for all m > 1. Now, by (4.6) and (4.5), we have

n b
r(l +2) = an( - _z)ﬁn,

where 8, = a—” bg for all n > 1. Thus ﬁ("+2) 0 for all » > 1 if and only if by = 0 or
Bn =0foralln > 1. On the other hand, Lemma 2.3 implies that §,, = 0 for all n > 1 if and
only if M, is a weighted shift.

Finally, by Proposition 2.7, we know that if M is a left-invertible weighted shift, then the

Shimorin kernel is also a diagonal kernel. This completes the proof of Theorem 4.2. H
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5. Positive operators and tridiagonal kernels

Our aim is to classify positive operators P on a tridiagonal space Hy such that
DxD >3 (z,w) = (Pk(-,w), k(-, 2)) 1,

is also a tridiagonal kernel. While this problem is of independent interest, the motivation for
our interest in this question also comes from Theorem 7.7 (also see the paragraph preceding
Corollary 9.2). We start with a simple example.

ExamPpLE 5.1. We consider the same example as in Example 4.1. Note that M, is left-
invertible and not a weighted shift with respect to the orthonormal basis { f, }n>0 of H.
Then by Lemma 2.6, we have

1 -2 00
500
M| =Ly Ly =[O0 0 1 0
0 0 01
Let )
a B 0 0
By 00
IM,7'=]0 0 1 0 .
0 0 01

a B
where

[B Y
shows that 5 + 8 # 0. Define K : D XD — C by

. . 1 -3 , .
is the positive square root of [ . 52| A straightforward calculation
2 3

K(z,w) = (M| 'k, w), k(- 2))gq, (2, w € D).

A simple computation then shows that
a a a
K =a+(=+pPw+(=+ +(=+B+y)zn+ "
(@w)=a+ (5 +BD+ (5 +Az+ (5 +B+y)a Zf ",
that is, K is also a tridiagonal kernel.

The following is a complete classification of positive operators P for which (z, w) —
(Pk(-,w), k(-,z))4 defines a tridiagonal kernel.
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THeOREM 5.2. Let ‘Hy be a tridiagonal space corresponding to the orthonormal basis
fn(2) = (an + by2)7", n > 0. Let P be a positive operator on Hy, with matrix representation

[coo
Co1
Co2

Co3

co1

€02
C12
€22

C23

€03

€13

€23

€33

with respect to the basis { f,, }n>0. Then the positive definite scalar kernel K, defined by

K(z,w) = (Pk(-,w), k(-, 2))#, (z,w € D),
is tridiagonal if and only if
con = (—1y 1 Ll s ),
a - an
and B _
Conn = (—1)"‘"‘_1Mcm,m+1 (1<m<n-=2).

Am+2 " dn
Equivalently, K is tridiagonal if and only if

oo o1 —%001 2;22 o1

Co1 C11 C12 —%012
P = —Z—;C_Ol C12 (&) €23
Z;Zi Coi —gCi2  n3 €33

Proof. Note, for each w € D, by (1.3), we have k(-,w) = >.;_) fim(w) fi, and thus

oo m-—1 oo
Pk(-,w) = Z(Z Crmfn(w) + Z Cmnfn(W)) fins
m=0 n=0 n=m

where Z;:lo Xp, :=0. Then

o m—1 co
(PEC,w), k() = D, (DO Eama@) + D Conn fu(w)
m=0 n=0 n=m

) m—1
Z(amzm + mem+1)(Z C_nm(anwn + bnwnH)
m=0 n=0

[oe]
+ " Con(@nid" + b))
n=m

Il
5
|
g
N
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where a,,, denotes the coefficient of z"w", m,n > 0. Our interest here is to compute @,
|m — n| > 2. Clearly, @, = @uy, for all m,n > 0, and

(5.1 aop = ao(@ncon + anlco,nfl) (n>2),

and

5.2)

Imn = am(‘incmn + Bn—lcm,n—l) + bm—l (a_ncm—l,n + En—lcm—l,n—l) (1 <m< l’l)

Suppose n > 2. By (5.1), ap, = 0 if and only if cq,, = —=2 =2,

then cgp = —g—;cm, and hence, by (5.1) again, we have

n- 1

o=y HECDE )
H = ai

Therefore, ag,, = 0 for all n > 2 if and only if the above identity hold for all n > 2.
Next we want to consider the case m,n # 0 and |m — n| > 2. Assume that n > 3. Then (5.2)
along with (5.1) implies

a1 = ay(@pcin + bnflcl,nfl) +bo(ancon + bnflCO,nfl)
- - bo
= al(ancln + bn—lcl,n—l) + a_a'0n~
0

Therefore, if ag, = 0 for all n > 3, then @y, = a1(@,c1n + bp_1¢1.0-1). Hence ay, = 0 if
and only if @, c1, + bn-1c1,,—1 = 0, which is equivalent to

bn—l

n

Cln = —

Cl,n-1-

Therefore, under the assumption that a1, = 0 and n > 4, (5.2) along with (5.1) implies

Aop = aZ(dnCZn + En—lCZ,n—l) + bl(&ncln + Bn—lcl,n—l)

= as(@nCon + bu-1c2,n-1).

Then ayp = 0, n = 4, if and only if Cop = ——2=

by induction, for all
m,n # 0and |[m — n| > 2, we have that a,,,, = 0 if and only if @, ¢, + En_lcm,n_l =0, or
equivalently

a":f;" Cm,m+1 forall 1 <m < n—2. This com-

pletes the proof of the theorem. [ ]

Finally, observe that c,,, = (=1)"~"~ l_b;' l

We will return to this in Theorem 8.3 and Corollary 8.4.
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6. Quasinormal operators

A bounded linear operator T € B(H) is said to be quasinormal if T*T and T commutes,
that is
[T°,T]T =0,

where [T*,T] =TT — TT* is the commutator of 7. In this section, we present a complete
classification of quasinormality of M, on analytic tridiagonal spaces. Here, however, we
do not need to assume that M, is left-invertible.

To motivate our result on quasinormality, we first consider the known case of weighted
shifts. Recall that the weighted shift S, corresponding to the weight sequence (of positive
real numbers) {a@; },>0 is given by Sqe, = @,eny for all n > 0. Then (see the proof of
Proposition 2.7)

SQSZE,IH = a'gle,H],
and hence (S},Sq¢ — SaS5)Se =0 if and only if (S%,S4 — S¢S%)Seen =0foralln > 0,
which is equivalent to

a"(arzwl - aﬁ) =0,
for all n. Thus, we have proved [8, Problem 139]:
LemmMma 6.1 ([8]). The weighted shift S o is quasinormal if and only if the weight sequence
{@, }ns>0 is a constant sequence.

Now we turn to M, on a semi-analytic tridiagonal space Hj.. Suppose [M}, M ] =rPj,,
where r is a non-negative real number and P 5, denote the orthogonal projection of Hy onto
the one dimensional space C fo. Then [M}, M;]M, = r Pz M, implies that

([M;, M M) fn = rbe(an)~

Now by (2.7) we have
2hh= D Bifis

i=n+l1

for some scalars 3; € C,i > n+ 1. Note that 8,41 = ;::1 # 0. This shows that Py, (zf,) =0,
and hence
([M:aMz]Mz)fn =0 (n> 0)7

that is, M, is quasinormal. Conversely, assume that M, is a non-normal and quasinormal
operator. Then [M}, M. |M, = 0 implies that ranM, C ker[M}, M.], and therefore, by
Lemma 2.4, we have

Cfo =ker M; D ran|M;, M,].

Clearly this implies [M, M,] = r Py, for some non-zero scalar . Then
FlLfoll> = (rP gy fos fodr = (I, Mc] fo, fodr = 1M foll* = 1M foll* = 1M foll*,

as M} fo = 0, which implies
M. 2
_IMAIPE
Il foll

Thus, we have proved:
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THEOREM 6.2. Let Hy be a semi-analytic tridiagonal space. Assume that M, is a non-
normal operator on Hy.. Then M, is quasinormal if and only if there exists a positive real
number r such that

MM, - MM, =rPy,
where P g, denote the orthogonal projection of Hy onto the one dimensional space C fj.

In more algebraic terms this result can be formulated as follows: First we recall the
matrix representation of M, (see (2.8))

0 0 0 0

4o
- 0 0 0

ﬂ
Co @ 0 0
[M,]=| =k ¢ a 0
zl = as 1 as

cobabs —c1bs a3
asay ag c2 ay
—Coh2b3b4 C1b3b4 *62b4 c
azaqas ajdas as 3

For each n > 0, we denote by R,, and C,, the n-th row and n-th column, respectively, of
[M.]. We then identify each of these column and row vectors with elements in Hy. Then
Ry, C, € Hi, n > 0. Using the matrix representation [M}] (see (2.9)) and [M.], we get

<R07 Rn)?’(k = 07
for all n > 0, and, consequently

(Co, Co), (C1, Co)p, (C2, Co)pe
. (Co, Ciy3,  (C1,Cr)g — (R1,R1) g, {Ca2, Cr)a, — (R1, Ro) gy,
[[MZ’Mz]] = [{Co. )i (Cr, Co)gy, = (R2, RiYgi (Co, Co)gy — (Ray Rodoy

Therefore:
CoRrROLLARY 6.3. Let Hy be a semi-analytic tridiagonal space. Then M, on Hy, is quas-
inormal if and only if (Cy, Co)¢, =1 and
(Co, Ciyp, =0 (I 21),
and
<Cn’ Cm>7~{k - <Rms Rn>7—{k = 0,
foralll <m < n.

It is easy to see that a quasinormal operator is always subnormal [8]. However, a com-
plete classification of subnormality of M, on tridiagonal spaces is rather more subtle and
not quite as clear-cut as in the quasinormal situation. In fact the general classification of
subnormality of M, on tridiagonal spaces is not known (however, see [1]).
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7. Aluthge transforms of shifts

Recall that the Aluthge transform of an operator T € B(H) is the bounded linear operator
~ 1 1
T=1|T|2U|T|2.

In this section, we prove that the Aluthge transform of a left-invertible shift on an analytic
Hilbert space is again an explicit shift on some analytic Hilbert space. We present two
approaches to this problem, one based on Shimorin’s analytic models of left-invertible
operators and one is based on rather direct reproducing kernel Hilbert space techniques.

We begin with the following simple fact concerning Aluthge transforms of left-invertible
operators:

LemMma 7.1. If T is a left-invertible operator on H, then

(ST

T =|r]P7i7] ",
and kerT* = |T|‘% ker T*. In particular, T is similar to T.

Proof. Indeed, T = |T|2U|T|z = |T|2(U|T))|T|"% = |T|>T|T|"%, as T*T is invertible. The
second equality follows from the first. [ ]

Suppose in addition that T is a shift on an analytic Hilbert space. In Theorem 7.3 (under
an additional assumption that T is analytic), and then in Theorem 7.7 again, we prove that T,
up to unitary equivalence, is also a shift on an explicit analytic Hilbert space. In connection
with Lemma 2.6, we now prove the following:

ProposiTION 7.2. IfT is a left-invertible operator on H, then the Shimorin left inverse L
of the Aluthge transform T is given by
Ly = [T} (LTI L) TV = (713 (" 1m) ' 7 )17

Proof. By Lemma 7.1, we know that 7 = |T|'/2T|T|~'/2. Since |T|'/? is invertible and
LyT = 1, we have
7" LT T = 1,

which implies that T is left-invertible, and hence (7*7)~! exists. By Lemma 7.1 again, we
have

T = (1727 |11") (IT)' T (T~ 17?)
=TT |T|T)|T| /2

Since (7*T) and |T|~!/? both are invertible, we conclude that 7*|T'|T is invertible. Moreover,
the above equality implies

(T*T)™" = |13 (T*|T)T) |77
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Then
Ly = (T*T)~'T* = (IT)3(T*|T\T) " |T13)IT| 2 7|72
= 713 (T 17im) ') 1.
On the other hand, since 7* = |T|>Ly, we have T*|T|T = |T|>L|T|T, and hence
(TT|T)~" = (L7 |TIT) T2
Therefore, (T*T)~! = |T|%(LT|T|T)‘1|T|‘%, which gives
~ e — | 1 _ _ % 1 1 _ 1

Ly = (T"T)'T* =T\ (Le|T\T) " |T|72(T*|T|2) = T2 (L7|TIT) ' L7 |T|?,

and completes the proof. [ ]

Then the above, along with Theorem 2.5 and Lemma 7.1 implies the following:

THeOREM 7.3. Let & be a Hilbert space, and let k : D x D — B(E) be an analytic kernel.
Suppose M, is left-invertible on ?—(k. Then the Aluthge transform M, is unitarily equivalent
to the shift M, on Hy € O(D, W), where

k(zow) = Pyy(I-zL)'(I-aL") "5  (zweD),
and W = ker M = |M,|" % ker M?, and
1 _ 1
L= M| ((La |M M)~ Lag )M

DEFINITION 7.4. The kernel k is called the Shimorin-Aluthge kernel of M.

Under some additional assumptions on scalar-valued analytic kernels, we now prove
that, up to similarity and a perturbation of an operator of rank at most one, L and Ly, are
the same. As far as concrete examples are concerned, these assumptions are indispensable
and natural (cf. Lemma 2.4).

THeOREM 7.5. Let k : D X D — C be an analytic kernel, C[z] € Hy, and let { f,,} C C[z]
be an orthonormal basis of Hy. Assume that M, on Hy is left-invertible, ker M} = Cfp,
and

fu € span{z™ :m > 1} (n=1).

Then Ly; and Ly, are similar up to the perturbation of an operator of rank at most one.

Proof. SincekerM;=Cfy, Ly, fo=0and Lps 2" = Las, M, (z*~1) =z""!, by the definition
of Ly, . This implies Lys_z" = "1, n > 1 (also see (3.3)). In particular, Ly, fn € C[z] for
all n > 0. Moreover, for each n > 1, we have

1, 1 -
LMZ(lePZl) = |Mz|2((LMZ|Mz|Mz) ILMZ)|MZ|Zn
1 _ ne
= |M,|2 (Lag, M M) ™ (Lag, |M M) 2",
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that is, LMZ(IMZI%z") = IMZI%z”_'. Therefore, we have
1 1
(M| "2 Lyz IM|?)2" = Ly, 2" =" (n21).
Then (|M|"3 Lz |M|? = Laz) f, = 0 for all n > 1, which gives

_1 1
(IM |72 Ly IM:1? = Lm,)lspanifm=1y = 0.
Finally, we have clearly
_1 1 _1 1
(IM] ZLMZ|MZ|2 = Lm.)fo = (IM] 2LMZ|MZ|2)f0’
and hence
(7.1) Fi= M| Ly IM.|% — L.

is of rank at most one, and consequently L ;_ |MZ|% = |MZ|%(LMZ + F). This completes
the proof of the theorem. [ ]

The following analysis of F, defined as in (7.1), will be useful in what follows. Note
that

1 1
(7.2) Ly IM;|? = |M|2(Ly, +F).
Let g € Hy. Clearly, since Ly, fo = 0, we have
_1 1
Fg =g, fo)r, (IMz]"2 Lyz_IM:|> fo).
Then Lemma 2.6 implies that
(7.3) Fg = (8. fo)pu (MIIM-|M) " MIIM|fo) (g € H).

As we will see in Section 8, the appearance of the finite rank operator F' causes severe com-
putational difficulties for Shimorin-Aluthge kernels of shifts. On the other hand, combining
Theorem 2.5, Proposition 7.2 and (7.2), we have:

THEOREM 7.6. In the setting of Theorem 7.5, the Aluthge transform M, of M, on Hy is
unitarily equivalent to the shift M, on H, where

k(z,w) = Pay(I = zL) "' (1 = @L*) ™ |qy,
W = |M.|"2 ker M} = C(|M.|~2 fy), and
L=|M.|*(Ly. +F)|M.| "2,

and
Fg =g, foya (MM M) " MZIM | fo) (g € Hy).
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We now revisit Theorem 7.3 from a direct reproducing kernel Hilbert space stand-
point. Indeed, there is a rather more concrete proof of Theorem 7.3 which avoids using
the analytic model of left-invertible operators. In this case, also, the reproducing kernel of
the corresponding Aluthge transform is explicit. Part of the proof follows the same line of
argumentation as the proof of reproducing kernel property of range spaces (cf. [3]). To the
reader’s benefit, we include all necessary details.

THEOREM 7.7. Let & be a Hilbert space, and let k : D XD — B(E) be an analytic kernel.
Assume that the shift M, is left-invertible on Hy. Then

<7€(Z7 w)n, ()8 = <|MZ|_l(k(" w)’?), k(’ Z)g))ﬂk (Z’ we D’ 777§ € 8)’

defines a kernel k : D x D — B(E). Moreover, the shift M, on H defines a bounded linear
operator, and there exists a unitary U : Hy. — Hy such that UM, = M, U.

Proof. Define H = |MZ|‘%7‘(k. Then H (= Hy) is an E-valued function Hilbert space
endowed with the inner product (|M,|~2 £, |M,|"2 g} = (f, g)#, for all f, g € Hy. For
each f € Hy, w € D and 57 € &, we have

(M| £, 1M (kG w)n)Yg = (s IM2] 72 (Ko )Y, = (IM2] ™2 f, K G w) ),

and hence, by the reproducing property of Hp, it follows that

(74) (M2 £ 1M (K G w)n))gg = (M2 £ (w), e

This says that {|M, |~ (k(-,w)n) :w e D,n € &} reproduces the values of functions in H,
and furthermore, the evaluation operator ev,, : H — & is continuous. Indeed

Cevw(IM.1™2 ), mel = (M|~ ) (w). el
= (M]3 £, M| (k (- w)n)
< M]3l M~ (K Cow)m) g
= IMo172 fllg 1M1 2 k()

Since IIk(-,w)TIII?Hk = (k(yw)n, k(s w)n)gq, = (k(w, w)n, e = |k (w, w) 2%, it follows
that

_1 _1
MM 72 (kCow)m) g < WM 2 | g 1k w)nll 44,
_1 1
= IM |72 | () lk(w,w)27lle
_1 1
< M2 g Tk(w, w) 2] s(s) lInlles

which implies that

_1 _1 1 _1
[evw (IM=172 ), mel < (NM]"2 |3 1k (w, w) 2 |3 e)) 1M ™2 fllg [1nlle-

Therefore H is an E-valued reproducing kernel Hilbert space corresponding to the kernel
function
k(z,w) = ev; o evy, (z,w € D).
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Clearly, (7.4) implies that ev’ = |M,| ! (k (-, w)n) forallw € Dand € E. Since (k (z,w)n, g =
(evyn, evi{)e, it follows that

(k(z,w)n, O = (M|~ (ko wm), IML] ™" (K (- 2)0)) g
= (M| % (K (- w)n), [M2| 72 (k (5 2)0)) a4,

that s, (k(z,w)n, O)e = (M|~ (k(-,w)n), k(-, DN, 2 weD,n, { € &. Therefore, as a
reproducing kernel Hilbert space corresponding to the kernel k, we have H; = H. Define
the unitary map U : Hy — Hj by

h=|M|"3h  (heHy),

and recall from Lemma 7.1 that M; = |Mz|‘%M;|MZ|%. Let f € Hy,weD,andletn € &.
Then

(UMU*(IM|72 ) (). m)e = (UMLU* (M]3 £), M| (ko w)n))g,
= (MU (1Mo |72 f), M]3 (k- w)m)) g,
= (fL MM |72 (kG w)n))gg,
= (f M| 3ME (K Gow))g,

But since M} (k(-,w)n) = wk(-, w)n, we have

(UMU(IM]72 £)) (), m)e = wlf> |M] ™2 (k(, w)n))a,
= ((IM.|2 f))(w), e,

which implies that
UMUS (M2 ) = (M2 f) - (f € M.
Thus the shift M, on H; is a bounded linear operator and UM, = M, U. [ ]
DErINITION 7.8. The kernel k is called the standard Aluthge kernel of M.
In particular, if k is a scalar-valued kernel, then k(-, w) = U (|Mz|‘%k(~, w)) and
k(z,w) = (M| k(- w), k(- 2))p, (2w €D).

Therefore, if the shift on a tridiagonal space Hj, is left-invertible, then there are two ways to
compute the Aluthge kernel k: use Theorem 7.3, or use the one above. However, it is curious
to note that, from a general computational point of view, neither approach is completely
satisfactory and definite. On the other hand, often the standard Aluthge kernel approach
(and sometimes both standard Aluthge kernel and Shimorin-Aluthge kernel methods) lead
to satisfactory results. We will discuss this in the following section.
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8. Truncated tridiagonal kernels

In this section, we introduce a (perhaps both deliberate and accidental) class of analytic
tridiagonal kernels from a computational point of view. Let #} be an analytic tridiagonal
space corresponding to the kernel

k(zw) = fu@faw)  (zweD),

n=0

where f,, = (a, + b,2)7", n > 0. Suppose r > 2 is a natural number. We say that k is a
truncated tridiagonal kernel of order r (in short, truncated kernel of order r) if

by=0  (n#2,3,....r).

We say that an analytic tridiagonal space Hj, is truncated space of order r if k is a truncated
kernel of order r. Note that there are no restrictions imposed on the scalars b, .. ., b,.
Let Hy be a truncated space of order r. Then M. is unitarily equivalent to M, on Hp,
where k is either the Shimorin-Aluthge kernel or the standard Aluthge kernel of M, as
in Theorem 7.3 and Theorem 7.7, respectively. Here our aim is to compute the Shimorin-
Aluthge kernel of M,. More specifically, we classify all truncated kernels k such that the
Shimorin-Aluthge kernel k of M, is tridiagonal. We begin by computing | M|,

LemmMma 8.1. If Hy. is a truncated space of order r, then

Y 0 - 0 0 0

aog
ci1 Cl2 ot Clrsl 0 0
0 C12 [ R o s 0 0
[ o o

0 Cipel Corsl ' Cralr+l 0 0 "
0 0 0 - 0 |Z2 0
0 0 0 -~ 0 0 |gms

with respect to the orthonormal basis { fy }n>0-
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Proof. For each n > 1, by the definition of d,, from (3.1), we have d,, = Z—Z - %, and
hence d;y =d,,; =0,i=2,3,.... Then Theorem 3.4 tells us that

[0 Z—(‘) 0 0 0 0 0

0 o0 Z—f 0 0 0 0

0 O do 0 0 0 0
[Lum.]= 0 (_l)r—ZdztlZ:::I;:,l d, S 0

0 0 CUTIEEEE v Tar A G

0 0 0 0 0 0 %

Now, by Lemma 2.6, |Mz|‘2 = Ly L3, , which implies

22 0 0
) 0 2
2= 0 a2, o,
0 D?
where
D? = diag( drs3 2, drid 2, . ),
Ar+2 ar+3

and Af ,1 18 a positive definite matrix of order r + 1. Using this, one easily completes the
proof. [ ]

From the computational point of view, it is useful to observe that Af = Lr+1Lj 1
where

Z—T 0 0 0 0
as
d, = 0 0 0
Ly = : : . : :

_1\r-2 doby---b,_; _1\r-3 dsbs---by_ e ar+l
( 1) az---ay ( 1) aima, ar 0
(_l)rfl dyby by (_])r72 dsbs- by R Gre2

asz- Ay Qrs ag:-arQri r+l G,

In other words, Af .1 admits a lower-upper triangular factorization. This is closely related
to the Cholesky factorizations/decompositions of positive-definite matrices in the setting
of infinite dimensional Hilbert spaces (see [3] and [12]).

We recall from Theorem 7.6 that the Shimorin-Aluthge kernel of M, is given by

k(z.w) = Py (I = 2Ly )" (I = 0Ly )y (zow e D),
where W = |MZ|_% ker M7, and

8.1) Lyy. = M3 (Lag, + F)[M,| ™2,
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and
Fg = (g, fo)n (MMM ™ MIMLRD) (8 € Hh).

We now come to the key point.

Lemma 8.2. If k is a truncated kernel, then F = 0 and LleMZﬁ = |MZ|%LMZ.

Proof. The matrix representation of |M_|~! in Lemma 8.1 implies that [M_|fy = |Z—‘1’|fo,
and hence a0
MM | fo=|—|M;fo=0,
a

by Lemma 2.4. Therefore, the proof follows from the definition of F' and (8.1). [ ]

We are finally ready to state and prove the result we are aiming for.

THeOREM 8.3. Let Hy be a truncated space of order r. Then the Shimorin-Aluthge kernel
is tridiagonal if and only if

b b

n-m—1Ym+1 n—1

Cmn = (_1) — — Cm,m+1>
Am+2 - dp

Joralll1 <m <n-2and3 <n <r+1, where cy,,, are the entries of the middle block

submatrix of order r + 1 of [lMZ|‘1] in Lemma 8.1.

Proof. We split the proof into several steps.
Step 1: First observe that k(z,w) = X _o
all m,n > 0. Now Lemma 8.2 implies that

Xyunz 0", where X, = P(WL”‘MZ ng |45 for
1 -1 1
LIA';IZL;;Z = |Mz|2LﬁZ|Mz| LEJMZP’

and Py, =1 - MLy, by (2.13).Since M = |M_|2 M_|M|"* and Ly, =|M.|? L. | M| 2,
we have

1 _1
Poy = M2 (I = ML) M| 7>
1 _1
=|Mz|2P'W|Mz| Z,
that is, P,W|MZ|% = |MZ|%PrW, which implies
~ 1 — *
(8.2) X = |Mc |2 Pay Ly |Mc| ™ Ly |l (m,n20).

As apassing remark, we note that the above equality holds so long as the finite rank operator
F = 0 (this observation also will be used in Example 9.1).

Step 2: Now we compute the matrix representation of L P2 1. By Theorem 3.4, we
have
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ay

as

In particular, this yields

afoifj=1
PayLy f; =4 @
wlu.f; {O otherwise.

p-n—1
Now we let p > 2. Recall from (4.6) the definition 8% = a,,(‘—bO) B, for all n =

ao
bn

a —Z—g.Sinceb():O,wehaveﬁflp) =0,1Sn<p—1,and

1,...,p—1, where 8, =

bp_1 B @)’

(p)
B, | =ap-1Bp-1=ap-1
_ p-1Pp p
p-l ap-1 ag

that is, ﬂ;p_)l = by forall p > 2. In particular, since by = 0, we have ,852) =b1 =0. Also

recall from (4.3) the definition d,(lp ) = b, — “”p bn_p,n > p. Therefore, by (4.7), the matrix

an-
. 2 . .
representation of L M. 18 given by

00 £ 0 o0

ao

a?
0 0 =2 &£ 0 .
[L3]= T
M1 dy as S I
0O 0 O - @ .
and in general, by (4.8), we have
[ b, a
0 0 ldo u‘;’ 0 0
d(p) Ayl
0 0 0 (’1’—1 %—;}) 0
d .
®3)  [Ly 1=|0 o 0o o0 =T (p=2).
@
0 0 O 0o - el
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Then
0 0 0 0
0 0 0 0
* }; - c.
(8.4) Lypl="% ©0 0 0 1 (=22,
i @
Z o _0 _O )
o g A _ann
a a aas

Step 3: We prove that X, = |Mz|%Pw|MZ|‘1LE | =0 forall n > 1. In what follows, the

above matrix representations and the one of | M| ~!in Lemma 8.1 will be used repeatedly.
By (4.2), we have Ly, fo = Z! f1, and hence

~ 1 1
Xovfo = IM;|> Paw M| "' Lyy_fo
1 aj _
= |Mz|2Pw(aTO[011f1 +Clpfat])
=0.

On the other hand, if n > 2, then
- b1 a
LM,fO = r_l_fn—l + __nfm
= ao ao

and hence |M, | fy L Ly} fo. This implies that Xon = 0forall n > 2. Therefore, all entries
in the first row (and hence, also in the first column) of the formal matrix representation of
k(z, w) are zero except the (0, 0)-th entry (which is I4y). Hence (see also (4.1))

Iy, 0 0 0
0 Xu Xio X
[IE(Z, w)] =10 X, Xn X

0 X )23“3 X33

Step 4: Our only interest here is to analyze the finite rank (of rank at most one) operator

Xm.m+k>» m > 1, k > 2. The matrix representation in (8.4) implies

* l A -
(8.5) LAZ+k 0= %(bm+k71fm+k71 + Amak fn+k)s

and hence

1 I - _ _ _
(8.6) |Mz| le\/r[T—k OZd_O(bm+k71|Mz| 1fm+kfl"'am+k|1uz| 1fm+k)-
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There are three cases to be considered:
Case I (m + k =r +2): Note that b,-,; = 0. Then

. I, _ _
M| 1LA;QZf():a(aquwA 'fra2)s

by (8.6), and thus

r+2

Ly \M |7 Ly fo = RLALE 1! fra2

ar+2 ar+3

Lz_ fr+2

ap lars

By (8.3), we have PWLI’(}IZfHQ = PwLﬁzfmJ,k = 0 (note that k > 2), and hence
Pay Ly M| Ly fo = 0,

that is, f(m,,,ﬁk = 0. It is easy to check that the equality also holds for m = 1.
CaseIl (m+k —1 > r+2): In this case, b,,,4x-1 = 0 and

|Mz|_1fm+k = |—

Again, by (8.3), we have P4y L', fm+k =0, k > 2, and hence in this case also X, n+x = 0.
Again, it is easy to check that the equality holds for m = 1.

Case Il (m + k < r +2): We again stress that m > 1 and k > 2. It is useful to observe, by
virtue of (8.3) (also see (4.12)), that

buclfy it j=m—1
Per[&ij = Z—?fg lf] =m
0 otherwise.

Now set s = m + k — 1. The matrix representation of |[M,|~! in Lemma 8.1 implies that
|Mz|_1fx = Clsfl + C2Sf2 +togefs + C_s,s+1fs+l +e+ C_s,r+1fr+1-
By (8.3) and the above equality, we have

1 a
+ Cm,s_m)fO-
ag

- by
(8.7) Py Ly IM:|™ fs = (em-1s—

Next, set t = m + k. Again, the matrix representation of |[M,|~! in Lemma 8.1 implies that
-1 _ _
M| fr =cufi+cufot - +euft +Coonfrar + 0+ Cr ot fran,
and, again, by (8.3) and the above equality, we have

bm—l

— a
(8.8) Pay Ly M7 fi = (e +ema ) o.
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It is easy to see that the equalities (8.7) and (8.8) also holds for m = 1. The equality in (8.5)
becomes

s I - _ _ _
| M| ILAZ+kf0:é_0(bs|Mz| lfs+at|Mz| lft)7

and hence, the one in (8.6) implies
1 em | R _
P'WLrl\r/lIZ |MZ| lLM;ka = W [bs(cm—l,sbm—l + cm,sam) +at(cm—1,tbm—1 + Cm,tam)]f0~
0
This shows that Pqy L |M |~ L3+ fo = 0 if and only if

Bs(cm—l,sbm—l + Cm,sam) + dl(cm—l,tbm—l + Cm,tam) =0.

Step 5: So far all we have proved is that k is tridiagonal if and only if
(8.9)

bm—l (bm+k—lcm—l,m+k—l + a_m+kcm—l,m+k) + am(bm+k—lcm,m+k—l + a_m+kcm,m+k) = 0,

foralm > 1,k >2andm+k <r+2.

If m = 1, then using the fact that by = 0, we have ¢ x4+ = —%cl,k, 2<k<r+1,and
hence .
LIS bi
cin = (=1)" 2%612 B<n<r+1).
i=3 4i

Similarly, if m = 2, then (8.9) together with the assumption that »; = 0 implies that

n-3 ?:El Bi
(810) Cop = (—1) —n - €23 (4 <n<r+ 1)
i=4 i

Next, if m = 3, then (8.9) again implies

b (brs2C2 k42 + Aka3C2,143) + A3(Drs2C3 ks2 + Ak43C3,443) = 0 (k<r-1).

On the other hand, by (8.10), we have ¢; x43 = — biesz ¢2,k+2, and hence

g3
bis2¢3 k42 + Ar43¢3,443 = 0,

which implies

bk+2
C3.k+3 = — 2
a

C3,k42 (k<r-1).
k+3

Now, evidently the recursive situation is exactly the same as that of the proof of Theorem
5.2 (more specifically, see (5.2)). This completes the proof of the theorem. [ ]

As is clear by now, by virtue of Theorem 5.2, the classification criterion of the above
theorem is also a classification criterion of tridiagonality of standard Aluthge kernels.
Therefore, we have the following:

CoroLLARY 8.4. If Hy is a truncated space, then the Shimorin-Aluthge kernel of M, is
tridiagonal if and only if the standard Aluthge kernel of M is tridiagonal.
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9. Final comments and results

First we comment on the assumptions in the definition of truncated kernels (see Section
8). The main advantage of the truncated space corresponding to a truncated kernel is that
F =0, where F is the finite rank operator as in (7.3). In this case, as already pointed out, we
have Ly, = |MZ|%L M, |Mz|‘%. This brings a big cut down in computation. On the other
hand, quite curiously, if
b():b] =10rb0=1,

and all other b;’s are equal to 0, then the corresponding standard Aluthge kernel of M is
tridiagonal kernel but the corresponding Shimorin-Aluthge kernel of M, is not a tridiagonal
kernel. Since computations are rather complicated in the presence of F, we only present
the result for the following (convincing) case:

ExampLE9.1. Leta, =bo=by=1andb,, =0foralln > 0and m > 2. Let H, denote the
tridiagonal space corresponding to the basis {(a, + b,z2)7" }nso. By (2.8) and Theorem
3.4, we have

0000 O
01 0 00 0
1000 O
00 1 00 0
0100 0
[M,] = and [Ly ]=10 0 =1 1 0 0 ,
0110 0 '
00 0 01 0
0001 0

respectively. Hence, applying Ly L}, = |M_ |72 (see Lemma 2.6) to this, we obtain

1 o o0 0 O--

0
IM,|72=10 -1 2 0 0
0

Suppose a = 3+2‘G and B = 3%5 It is useful to observe that (1 —a)(1 =) + 1 =0. Set

a bl |1 —l%

b c| -1 2|~
whereaz%[\/c_y(l—ﬂ)—\/ﬁ(l—a)] andbz%[—\/a+\/ﬁ], andcz%[—\/a(l—
a) +VB(1 = B)]. Clearly

|]Mz|_l =

(=R N o)
~ O O O

1 0
0 a
0 b
0 0
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From this it follows that |M,|fo = fo, and hence the finite rank operator F, as in (7.3), is
given by

Fg = (g, fodo (MMM ™ MIMLIfo) =0 (g € H).

Then F =0, and hence (7.2) implies that Ly; = |M_| 2 Ly, |Mz|_%. By (8.2) (also see Step
1 in the proof of Theorem 8.3), the coefficient of 2" of the Shimorin-Aluthge kernel k is
given by X,um = |MZ|%PrWLAm/I M, |_1Lﬁ |y, m,n > 0. We compute the coefficient of zi>
as

PayLar M| Ly fo = PavLa. IM:|"' Ly;_fi
= PawLy. M| "Ly, fo
= PayLy, IM |7 (= + f5)
=PwLm (=bfi —cfa+ f3)
= PywLpy_ (=bf1)
=-bfp.

But b = \/ig [—va + VB] # 0, and hence X3 # 0. This implies that the Shimorin-Aluthge

kernel is not tridiagonal. On the other hand, the matrix representation of |M,|~" implies
right away that the standard Aluthge kernel is tridiagonal (see Theorem 5.2).

Now we return to standard Aluthge kernels of shifts (see the definition following The-
orem 7.7). Let Hy € O(D) be a reproducing kernel Hilbert space. Suppose M, on Hj.
is left-invertible. Then Theorem 7.7 says that M, and M, on H;(C O(D)) are unitarily
equivalent, where

F(zw) = (M| k(). k(2 = (M7 kG, w) @),
for all z, w € D. In the following, as a direct application of Theorem 5.2, we address the
issue of tridiagonal representation of the shift M, on Hy.

CoroLLARY 9.2. In the setting of Theorem 7.7, assume in addition that & = C and Hj, is
a tridiagonal space with respect to the orthonormal basis { f, }n>0, where f,,(z) = (a, +
bn2)7", n = 0. Then Hy, is a tridiagonal space if and only if

bib,

b,
€00 o1 — 3 Co1

Tas €01
= by
Co1 C11 C12 _536'12
UIM,|U* = | -bLg 3 g
4 @ €01 C12 C22 €23 e
biby = _ by~ =
wa, €01 a; €12 €23 €33

with respect to the basis { fy }n>0-
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Proof. Recall from Theorem 7.7 that H; = IMZI‘%W;( andUh = |MZ|‘%h, h € Hy, defines
the intertwining unitary. Set P := U|M,|U". Then P € B(Hy) is a positive operator, and
for any z, w € D, we have

<P];("w)’];("z)>‘7‘(,; = <|MZ|U*];(7w)’ U*];(’ Z)>‘7‘(k
= (MM "2k (- w), [ M| k(- 2))
= <k(a IU), k(7 Z)>Wk’

as U(|Mz|‘%k(~, w)) = k(-,w). Hence k(z,w) = (Pk(-,w), IE(-,z))(HE, z,w € D. The result
now follows from Theorem 5.2. [ |

In particular, if kisa tridiagonal kernel, then for k to be a tridiagonal kernel, it is
necessary (as well as sufficient) that U|M,|U* is of the form as in the above statement.

We conclude this paper with the following curious observation which stems from the
matrix representations of Shimorin left inverses of shifts on analytic tridiagonal spaces
(see Theorem 3.4). Let Hj be an analytic tridiagonal space. Recall that Ly, denotes the
Shimorin left inverse of M,. By Lemma 2.6, we have |M,|™% = L m. L, . From the matrix
representation of Ly, in Theorem 3.4, one can check that the matrix representation of
|M_|~2 satisfies the conclusion of Theorem 5.2. Consequently, the positive definite scalar
kernel

K(Z’ w) = <|MZ|_2k("w)’k(" Z)>7’(k (Z’w € D)’

is a tridiagonal kernel. On the other hand, consider

2 ifn=2 1 ifn=2
an = ) and b, = .
1 otherwise, 0 otherwise.

Then the shift M, on the analytic tridiagonal space H} corresponding to the orthonormal
basis { fu }n>0, Where f,,(z) = (a, + by2)7", n > 0, is left-invertible. However, a moderate
computation reveals that the matrix representation of | M| ~! does not satisfy the conclusion
of Theorem 5.2. In other words, the positive definite scalar kernel

K(Z’ w) = <|MZ|_lk("w)’k("z)>'}’(k (Z’w ED)’

is not a tridiagonal kernel.
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