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Tridiagonal kernels and left-invertible operators with
applications to Aluthge transforms

Susmita Das and Jaydeb Sarkar

Abstract. Given scalars 𝑎𝑛 (≠ 0) and 𝑏𝑛, 𝑛 ≥ 0, the tridiagonal kernel or band kernel
with bandwidth 1 is the positive definite kernel 𝑘 on the open unit disc D defined by

𝑘 (𝑧, 𝑤) =
∞∑︁
𝑛=0

(
(𝑎𝑛 + 𝑏𝑛𝑧)𝑧𝑛

) (
(�̄�𝑛 + �̄�𝑛�̄�)�̄�𝑛

)
(𝑧, 𝑤 ∈ D).

This defines a reproducing kernel Hilbert space H𝑘 (known as tridiagonal space) of
analytic functions on D with {(𝑎𝑛 + 𝑏𝑛𝑧)𝑧𝑛}∞𝑛=0 as an orthonormal basis. We con-
sider shift operators 𝑀𝑧 on H𝑘 and prove that 𝑀𝑧 is left-invertible if and only if
{|𝑎𝑛/𝑎𝑛+1 |}𝑛≥0 is bounded away from zero. We find that, unlike the case of weighted
shifts, Shimorin’s models for left-invertible operators fail to bring to the foreground
the tridiagonal structure of shifts. In fact, the tridiagonal structure of a kernel 𝑘 , as
above, is preserved under Shimorin model if and only if 𝑏0 = 0 or that𝑀𝑧 is a weighted
shift. We prove concrete classification results concerning invariance of tridiagonality
of kernels, Shimorin models, and positive operators.

We also develop a computational approach to Aluthge transforms of shifts. Curi-
ously, in contrast to direct kernel space techniques, often Shimorin models fails to
yield tridiagonal Aluthge transforms of shifts defined on tridiagonal spaces.
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1. Introduction

The theory of left-invertible weighted shifts or multiplication operators 𝑀𝑧 on “diagonal”
reproducing kernel Hilbert spaces is one of the most useful in operator theory, function
theory, and operator algebras (see the classic by Shields [15]). Given a bounded sequence
of positive real numbers 𝛼 = {𝛼𝑛}𝑛≥0, and an orthonormal basis {𝑒𝑛}𝑛≥0 of an infinite-
dimensional Hilbert space H (complex separable), the operator 𝑆𝛼 defined by

(1.1) 𝑆𝛼𝑒𝑛 = 𝛼𝑛𝑒𝑛+1 (𝑛 ≥ 0),

is called a weighted shift with weights {𝛼𝑛}𝑛≥0. In this case, 𝑆𝛼 is bounded (𝑆𝛼 ∈ B(H)
in short) and ∥𝑆𝛼∥ = sup𝑛 𝛼𝑛. If the sequence {𝛼𝑛}𝑛≥0 is bounded away from zero, then
𝑆𝛼 is a left-invertible but non-invertible operator. Note that the multiplication operator
𝑀𝑧 on (most of the) diagonal reproducing kernel Hilbert spaces is the function theoretic
counterpart of left-invertible weighted shifts which includes the Dirichlet shift, the Hardy
shift, and the weighted and unweighted Bergman shifts, etc.

The main focus of this article is to study shifts on the “next best” concrete analytic
kernels, namely, tridiagonal kernels. This notion was introduced by Adams and McGuire
[2] in 2001 (also see the motivating paper by Adams, McGuire and Paulsen [3]). However, in
spite of its natural appearance and potential applications, far less attention has been paid to
the use of tridiagonal kernels in the aforementioned subjects. On the other hand, Shimorin
[17] developed the idea of analytic models of left-invertible operators at about the same
time as Adams and McGuire, which has been put forth as a key model for left-invertible
operators by a number of researchers [6, 7, 10, 13].

In the present paper we consider the next level of shifts on tridiagonal spaces, namely
left-invertible shifts on tridiagonal spaces. We also discuss the pending and inevitable com-
parisons between Shimorin’s analytic models of left-invertible operators and Adams and
McGuire’s theory of left-invertible shifts on tridiagonal spaces. In particular (and curiously
enough), we find that, unlike the case of weighted shifts, Shimorin models fail to bring to
the foreground the tridiagonal structure of shifts. We resolve this dilemma by presenting a
complete classification of tridiagonal kernels that are preserved under Shimorin models.

We also prove a number of results concerning left-invertible properties of shifts on
tridiagonal spaces, new tridiagonal spaces from the old, classifications of quasinormal
operators, rank-one perturbations of left inverses, a computational approach to Aluthge
transforms of shifts, etc. Again, curiously enough, some of our definite computations in
the setting of tridiagonal kernels verify that the direct reproducing kernel Hilbert space
technique is somewhat more powerful than Shimorin models. We also provide a family of
instructive examples and supporting counterexamples.

To demonstrate the main contribution of this paper, it is now necessary to disambiguate
central concepts. Needless to say, the theory of reproducing kernel Hilbert spaces will play
a central role in this paper. Briefly stated, the essential idea of reproducing kernel Hilbert
space [5] is to single out the role of positive definiteness of inner products, multipliers and
bounded point evaluations of function Hilbert spaces. We denote by D = {𝑧 ∈ C : |𝑧 | < 1}
the open unit disc in C. Let E be a Hilbert space. A function 𝑘 : D × D→ B(E) is called
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an analytic kernel if 𝑘 is positive definite, that is,

𝑛∑︁
𝑖, 𝑗=1

⟨𝑘 (𝑧𝑖 , 𝑧 𝑗 )𝜂 𝑗 , 𝜂𝑖⟩E ≥ 0,

for all {𝑧𝑖}𝑛𝑖=1 ⊆ D, {𝜂𝑖}𝑛𝑖=1 ⊆ E and 𝑛 ∈ N, and 𝑘 analytic in the first variable. In this
case there exists a Hilbert space H𝑘 , which we call analytic reproducing kernel Hilbert
space (analytic Hilbert space, in short), of E-valued analytic functions on D such that
{𝑘 (·, 𝑤)𝜂 : 𝑤 ∈D, 𝜂 ∈ E} is a total set inH𝑘 with the reproducing property ⟨ 𝑓 , 𝑘 (·, 𝑤)𝜂⟩H𝑘

=

⟨ 𝑓 (𝑤), 𝜂⟩E for all 𝑓 ∈ H𝑘 , 𝑤 ∈ D, and 𝜂 ∈ E. The shift operator on H𝑘 is the multiplication
operator 𝑀𝑧 (which will be assumed to be bounded) defined by

(𝑀𝑧 𝑓 ) (𝑤) = 𝑤 𝑓 (𝑤) ( 𝑓 ∈ H𝑘 , 𝑤 ∈ D).

Note that there exist 𝐶𝑚𝑛 ∈ B(E) such that 𝑘 (𝑧, 𝑤) = ∑∞
𝑚,𝑛=0 𝐶𝑚𝑛𝑧

𝑚�̄�𝑛, 𝑧, 𝑤 ∈ D. We
say that H𝑘 is a diagonal reproducing kernel Hilbert space (and 𝑘 is a diagonal kernel)
if 𝐶𝑚𝑛 = 0 for all |𝑚 − 𝑛| ≥ 1. We say that 𝑘 is a tridiagonal kernel (or band kernel with
bandwidth 1) if

(1.2) 𝐶𝑚𝑛 = 0 ( |𝑚 − 𝑛| ≥ 2).

In this case, we say that H𝑘 is a tridiagonal space. Now let {𝑎𝑛}𝑛≥0 and {𝑏𝑛}𝑛≥0 be a
sequences of scalars. In this paper, we will always assume that 𝑎𝑛 ≠ 0, for all 𝑛 ≥ 0. Set

𝑓𝑛 (𝑧) = (𝑎𝑛 + 𝑏𝑛𝑧)𝑧𝑛 (𝑛 ≥ 0).

Assume that { 𝑓𝑛}𝑛≥0 is an orthonormal basis of an analytic Hilbert space H𝑘 . Then H𝑘 is
a tridiagonal space, as the well known fact from the reproducing kernel theory implies that

(1.3) 𝑘 (𝑧, 𝑤) =
∞∑︁
𝑛=0

𝑓𝑛 (𝑧) 𝑓𝑛 (𝑤) (𝑧, 𝑤 ∈ D).

We now turn to Shimorin’s analytic model of left-invertible operators [17], which says
that if𝑇 ∈ B(H) is left-invertible and analytic (that is,∩∞

𝑛=0𝑇
𝑛H = {0}), then there exists an

analytic Hilbert spaceH𝑘 (⊆ O(D,W)) such that𝑇 and 𝑀𝑧 onH𝑘 are unitarily equivalent,
where W = ker𝑇∗ = H ⊖ 𝑇H is the wandering subspace of 𝑇 , and O(D,W) is the set
of W-valued analytic functions on D. The Shimorin kernel 𝑘 is explicit (see (2.11)) which
involves the Shimorin left inverse

(1.4) 𝐿𝑇 = (𝑇∗𝑇)−1𝑇∗,

of 𝑇 . The representation of the Shimorin kernel is useful in studying wandering subspaces
of invariant subspaces of weighted shifts [16,17]. See [9, Chapter 6] and [14] in the context
of the wandering subspace problem, and [13] and the extensive list of references therein
for recent developments and implementations of Shimorin models.

We prove the following set of results: In Section 2, we present basic properties and
constructions of tridiagonal spaces and Shimorin models. We introduce the core concept
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of this paper: An analytic tridiagonal kernel is a scalar kernel 𝑘 as in (1.3) such thatC[𝑧] ⊆
H𝑘 , and

sup
𝑛≥0

��� 𝑎𝑛
𝑎𝑛+1

��� < ∞ and lim sup
𝑛≥0

��� 𝑏𝑛
𝑎𝑛+1

��� < 1,

(which ensures that 𝑀𝑧 on H𝑘 is bounded) and {| 𝑎𝑛
𝑎𝑛+1

|}𝑛≥0 is bounded away from zero.
An analytic Hilbert space is called analytic tridiagonal space if the kernel function is an
analytic tridiagonal kernel. In Proposition 2.7, we prove (a well-known fact) that weighted
shifts behave well under Shimorin’s analytic models.

In Section 3, we prove that {| 𝑎𝑛
𝑎𝑛+1

|}𝑛≥0 is bounded away is equivalent to the fact that
𝑀𝑧 on H𝑘 is left-invertible (see Theorems 3.2 and 3.5). We compute representations of
Shimorin left inverses of shifts on analytic tridiagonal spaces (see Proposition 3.1 and
Theorem 3.4).

Section 4 starts with Example 4.1, which shows that Shimorin kernels do not necessarily
preserve the tridiagonal structure of kernels. We are nevertheless able to prove in Theorem
4.2 that it does for a kernel 𝑘 of the form (1.3) if and only if 𝑀𝑧 on H𝑘 is a weighted shift
or

𝑏0 = 0.

The main result of Section 5 classifies positive operators 𝑃 on a tridiagonal space H𝑘

such that 𝐾 (𝑧, 𝑤) := ⟨𝑃𝑘 (·, 𝑤), 𝑘 (·, 𝑧)⟩H𝑘
defines a tridiagonal kernel onD. More specific-

ally, if

𝑃 =



𝑐00 𝑐01 𝑐02 𝑐03 . . .

𝑐01 𝑐11 𝑐12 𝑐13
. . .

𝑐02 𝑐12 𝑐22 𝑐23
. . .

𝑐03 𝑐13 𝑐23 𝑐33
. . .

...
...

...
. . .

. . .


,

denote the matrix representation of 𝑃 with respect to the basis {(𝑎𝑛 + 𝑏𝑛𝑧)𝑧𝑛}𝑛≥0 of H𝑘 ,
then the kernel 𝐾 is tridiagonal if and only if 𝑐0𝑛 = (−1)𝑛−1 �̄�1 · · ·�̄�𝑛−1

�̄�2 · · ·�̄�𝑛 𝑐01, 𝑛 ≥ 2, and 𝑐𝑚𝑛 =

(−1)𝑛−𝑚−1 �̄�𝑚+1 · · ·�̄�𝑛−1
�̄�𝑚+2 · · ·�̄�𝑛 𝑐𝑚,𝑚+1 for all 1 ≤ 𝑚 ≤ 𝑛 − 2 (see Theorem 5.2).

Section 6 deals with quasinormal shifts. Suppose 𝑀𝑧 is non-normal on an analytic tri-
diagonal space H𝑘 . Denote by 𝑃C 𝑓0 the orthogonal projection of H𝑘 onto C 𝑓0. In Theorem
6.2, we prove that 𝑀𝑧 is quasinormal if and only if there exists 𝑟 > 0 such that

𝑀∗
𝑧𝑀𝑧 − 𝑀𝑧𝑀

∗
𝑧 = 𝑟𝑃C 𝑓0 .

In Section 7, we compute Aluthge transforms of shifts. The notion of Aluthge trans-
forms was introduced by Aluthge [4] in his study of 𝑝-hyponormal operators. Let H be
a Hilbert space, 𝑇 ∈ B(H), and let 𝑇 = 𝑈 |𝑇 | be the polar decomposition of 𝑇 . Here,
and throughout this note, |𝑇 | = (𝑇∗𝑇) 1

2 and 𝑈 is the unique partial isometry such that
ker𝑈 = ker𝑇 . The Aluthge transform of 𝑇 is the bounded linear operator

𝑇 = |𝑇 | 1
2𝑈 |𝑇 | 1

2 .
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The Aluthge transform of 𝑇 turns 𝑇 into a more “normal” operator while keeping intact
the basic spectral properties of 𝑇 [11]. Evidently, the main difficulty associated with 𝑇 is
to compute or represent the positive part |𝑇 |. This is certainly not true for weighted shifts:
Since |𝑆𝛼 | = diag(𝛼0, 𝛼1, 𝛼2, . . .) (cf. Proposition 2.7), it follows that 𝑆𝛼 = 𝑆√𝛼, where

√
𝛼 := {√𝛼0𝛼1,

√
𝛼1𝛼2, . . .}.

Therefore, 𝑆𝛼 is also a weighted shift, namely 𝑆√𝛼. Here we consider the next natural step:
computation of �̃�𝑧 , where 𝑀𝑧 is a left-invertible shift on some analytic Hilbert space H𝑘 .
We prove that �̃�𝑧 is also a left-invertible shift on some analytic Hilbert space H�̃� . The
kernel �̃� can be obtained either via Shimorin’s model (see Theorem 7.3), which we call the
Shimorin-Aluthge kernel of𝑀𝑧 , or by a direct approach (see Theorem 7.7), which we call the
standard Aluthge kernel of 𝑀𝑧 . In Theorem 7.5, we prove that if C[𝑧] ⊆ H𝑘 ⊆ O(D), then
𝐿𝑀𝑧

and 𝐿�̃�𝑧
are similar up to the perturbation of an operator of rank at most one. Moreover,

in this setting Shimorin-Aluthge kernels are somewhat more explicit (see Theorem 7.6).
In Section 8 we consider truncated spaces (subclass of analytic tridiagonal spaces)

in order to pinpoint more definite results, instructive examples, and counterexamples. A
truncated space of order 𝑟 (≥ 2) is an analytic tridiagonal space H𝑘 with 𝑘 as in (1.3) such
that

𝑏𝑛 = 0 (𝑛 ≠ 2, 3, . . . , 𝑟).

The computational advantage of a truncated space is that it annihilate a rank one operator
(see (7.3)) associated with 𝐿𝑀𝑧

of the shift 𝑀𝑧 . As a result, in this case we are able to
prove a complete classification of tridiagonal Shimorin-Aluthge kernels of shifts. This is
the content of Theorem 8.3. Curiously, the classification criterion of Theorem 8.3 is also
the classification criterion of tridiagonality of standard Aluthge kernels (see Corollary 8.4).

In Section 9, we comment on the assumptions in the definition of truncated kernels.
We point out, at the other extreme, if one consider a (non-truncated) tridiagonal kernel 𝑘
with

𝑏0 = 𝑏1 = 1 or 𝑏0 = 1,

and all other 𝑏𝑖’s are equal to 0, then the standard Aluthge kernel of 𝑀𝑧 is a tridiagonal
but the Shimorin-Aluthge kernel of 𝑀𝑧 is not. This is the main content of Example 9.1.
We conclude the paper by two observations concerning tridiagonal structures of standard
Aluthge kernels and kernels of the form (𝑧, 𝑤) ↦→ ⟨|𝑀𝑧 |−2𝑘 (·, 𝑤), 𝑘 (·, 𝑧)⟩.

We remark that some of the observations outlined in Sections 7 and 8 are based on
several more general results that have an independent interest in broader operator theory
and function theoretic contexts.

2. Preparatory results and examples

In this section, we set up some definitions, collect some known facts about tridiagonal
reproducing kernel Hilbert spaces and Shimorin analytic models, and observe some auxil-
iary results which are needed throughout the paper. We also explain the idea of Shimorin
with the example of diagonal kernels (or equivalently, weighted shifts).
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We start with tridiagonal spaces. Here we avoid finer technicalities [2] and introduce
only the necessary features of tridiagonal spaces. Let E be a Hilbert space, 𝑘 be a B(E)-
valued analytic kernel onD, and letH𝑘 ⊆ O(D,E) be the corresponding reproducing kernel
Hilbert space. Then there exists a sequence {𝐶𝑚𝑛}𝑚,𝑛≥0 ⊆ B(E) such that

𝑘 (𝑧, 𝑤) =
∞∑︁

𝑚,𝑛=0
𝐶𝑚𝑛𝑧

𝑚�̄�𝑛 (𝑧, 𝑤 ∈ D).

Recall that (see (1.2)) 𝑘 is a tridiagonal kernel if 𝐶𝑚𝑛 = 0, |𝑚 − 𝑛| ≥ 2. We say that H𝑘 is
a tridiagonal space if 𝑘 is tridiagonal. We now single out two natural tridiagonal spaces.

Definition 2.1. A tridiagonal spaceH𝑘 is called semi-analytic tridiagonal space ifC[𝑧] ⊆
H𝑘 ⊆ O(D), and there exist scalars {𝑎𝑛}𝑛≥0 and {𝑏𝑛}𝑛≥0, 𝑎𝑛 ≠ 0 for all 𝑛 ≥ 0, such that

(2.1) sup
𝑛≥0

��� 𝑎𝑛
𝑎𝑛+1

��� < ∞ and lim sup
𝑛≥0

��� 𝑏𝑛
𝑎𝑛+1

��� < 1,

and { 𝑓𝑛}𝑛≥0 is an orthonormal basis of H𝑘 , where

(2.2) 𝑓𝑛 (𝑧) = (𝑎𝑛 + 𝑏𝑛𝑧)𝑧𝑛 (𝑛 ≥ 0).

Note that the conditions in (2.1) ensure that the shift 𝑀𝑧 is a bounded linear operator
on H𝑘 [2, Theorem 5]. We refer the reader to [2, Theorem 2] on the containment of poly-
nomials.

Definition 2.2. A semi-analytic tridiagonal space H𝑘 is said to be analytic tridiagonal
space if the sequence {| 𝑎𝑛

𝑎𝑛+1
|}𝑛≥0 is bounded away from zero, that is, there exists 𝜖 > 0

such that

(2.3)
��� 𝑎𝑛
𝑎𝑛+1

��� > 𝜖 (𝑛 ≥ 0).

A scalar kernel 𝑘 is called semi-analytic (analytic) tridiagonal kernel if the corres-
ponding reproducing kernel Hilbert space H𝑘 is a semi-analytic (an analytic) tridiagonal
space.

It is important to note that (2.3) is essential for left invertibility of 𝑀𝑧 . As we will see
in Theorem 3.5, if H𝑘 (⊇ C[𝑧]) is a tridiagonal space corresponding to the orthonormal
basis { 𝑓𝑛}𝑛≥0 as in (2.2), and if {𝑎𝑛}𝑛≥0 and {𝑏𝑛}𝑛≥0 satisfies the conditions in (2.1),
then condition (2.3) is equivalent to the left invertibility of 𝑀𝑧 on H𝑘 . Also recall that the
weighted shift 𝑆𝛼 with weights {𝛼𝑛}𝑛≥0 (see (1.1)) is bounded if and only if sup𝑛≥0 𝛼𝑛 <

∞. In this case, 𝑆𝛼 is left-invertible if and only if {𝛼𝑛}𝑛≥0 is bounded away from zero
(cf. Proposition 2.7). By translating this into the setting of analytic Hilbert spaces [15,
Proposition 7], it is clear that the conditions in Definition 2.2 are natural. For instance, if
𝑏𝑛 = 0, 𝑛 ≥ 0, then (2.3) is a necessary and sufficient condition for left invertibility of shifts
on diagonal kernels.

Suppose 𝑘 is a semi-analytic tridiagonal kernel. Note that 𝑘 (𝑧, 𝑤) = ∑∞
𝑛=0 𝑓𝑛 (𝑧) 𝑓𝑛 (𝑤)

(see (1.3)). Now fix 𝑛 ≥ 0, and write 𝑧𝑛 =
∑∞

𝑚=0 𝛼𝑚 𝑓𝑚 for some 𝛼𝑚 ∈ C, 𝑚 ≥ 0. Then

𝑧𝑛 = 𝛼0𝑎0 +
∞∑︁

𝑚=1
(𝛼𝑚−1𝑏𝑚−1 + 𝛼𝑚𝑎𝑚)𝑧𝑚.
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Thus comparing coefficients, we have 𝛼0 = 𝛼1 = · · · = 𝛼𝑛−1 = 0, and 𝛼𝑛 = 1
𝑎𝑛

, as 𝑎𝑖’s are
non-zero scalars. Since

𝛼𝑛+ 𝑗−1𝑏𝑛+ 𝑗−1 + 𝛼𝑛+ 𝑗𝑎𝑛+ 𝑗 = 0,

it follows that 𝛼𝑛+ 𝑗 = − 𝛼𝑛+ 𝑗−1𝑏𝑛+ 𝑗−1
𝑎𝑛+ 𝑗

, and thus

𝛼𝑛+ 𝑗 =
(−1) 𝑗
𝑎𝑛

𝑏𝑛𝑏𝑛+1 · · · 𝑏𝑛+ 𝑗−1

𝑎𝑛+1 · · · 𝑎𝑛+ 𝑗
( 𝑗 ≥ 1).

This implies

(2.4) 𝑧𝑛 =
1
𝑎𝑛

∞∑︁
𝑚=0

(−1)𝑚
( ∏𝑚−1

𝑗=0 𝑏𝑛+ 𝑗∏𝑚−1
𝑗=0 𝑎𝑛+ 𝑗+1

)
𝑓𝑛+𝑚 (𝑛 ≥ 0),

where
∏−1

𝑗=0 𝑥𝑛+ 𝑗 := 1. With this, we now proceed to compute 𝑀𝑧 [2, Section 3]. Let 𝑛 ≥ 0.
Then 𝑀𝑧 𝑓𝑛 = 𝑎𝑛𝑧

𝑛+1 + 𝑏𝑛𝑧𝑛+2 implies that

𝑀𝑧 𝑓𝑛 =
𝑎𝑛

𝑎𝑛+1
𝑓𝑛+1 + (𝑏𝑛 −

𝑎𝑛𝑏𝑛+1

𝑎𝑛+1
)𝑧𝑛+2 =

𝑎𝑛

𝑎𝑛+1
𝑓𝑛+1 + 𝑎𝑛+2 (

𝑏𝑛

𝑎𝑛+2
− 𝑎𝑛

𝑎𝑛+1

𝑏𝑛+1

𝑎𝑛+2
)𝑧𝑛+2,

that is

(2.5) 𝑀𝑧 𝑓𝑛 =
𝑎𝑛

𝑎𝑛+1
𝑓𝑛+1 + 𝑎𝑛+2𝑐𝑛𝑧

𝑛+2,

where

(2.6) 𝑐𝑛 =
𝑎𝑛

𝑎𝑛+2

( 𝑏𝑛
𝑎𝑛

− 𝑏𝑛+1

𝑎𝑛+1

)
(𝑛 ≥ 0).

Then (2.4) implies that

(2.7) 𝑀𝑧 𝑓𝑛 =

( 𝑎𝑛
𝑎𝑛+1

)
𝑓𝑛+1 + 𝑐𝑛

∞∑︁
𝑚=0

(−1)𝑚
(∏𝑚−1

𝑗=0 𝑏𝑛+2+ 𝑗∏𝑚−1
𝑗=0 𝑎𝑛+3+ 𝑗

)
𝑓𝑛+2+𝑚 (𝑛 ≥ 0),

and hence, with respect to the orthonormal basis { 𝑓𝑛}𝑛≥0, we have (also see [2, Page 729])

(2.8) [𝑀𝑧] =



0 0 0 0 . . .

𝑎0
𝑎1

0 0 0
. . .

𝑐0
𝑎1
𝑎2

0 0
. . .

−𝑐0𝑏2
𝑎3

𝑐1
𝑎2
𝑎3

0
. . .

𝑐0𝑏2𝑏3
𝑎3𝑎4

−𝑐1𝑏3
𝑎4

𝑐2
𝑎3
𝑎4

. . .

−𝑐0𝑏2𝑏3𝑏4
𝑎3𝑎4𝑎5

𝑐1𝑏3𝑏4
𝑎4𝑎5

−𝑐2𝑏4
𝑎5

𝑐3
. . .

...
...

...
. . .

. . .



.

The matrix representation of the conjugate of 𝑀𝑧 is going to be useful in what follows:
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(2.9) [𝑀∗
𝑧 ] =



0 �̄�0
�̄�1

𝑐0
−�̄�0 �̄�2
�̄�3

−�̄�0 �̄�2 �̄�3
�̄�3 �̄�4

. . .

0 0 �̄�1
�̄�2

𝑐1
−�̄�1 �̄�3
�̄�4

. . .

0 0 0 �̄�2
�̄�3

𝑐2
. . .

0 0 0 0 �̄�3
�̄�4

. . .

...
...

...
...

. . .
. . .


.

In particular, 𝑀𝑧 is a weighted shift if and only if 𝑐𝑛 = 0 for all 𝑛 ≥ 0. Also, by (2.6), we
have 𝑐𝑛 = 0 if and only if 𝑏𝑛+1

𝑎𝑛+1
=

𝑏𝑛
𝑎𝑛

, 𝑛 ≥ 0. Therefore, we have the following observation:

Lemma 2.3. The shift 𝑀𝑧 on a semi-analytic tridiagonal space H𝑘 is a weighted shift
corresponding to the basis { 𝑓𝑛}𝑛≥0 if and only if 𝑐𝑛 = 0 for all 𝑛 ≥ 0, or, equivalently,
{ 𝑏𝑛
𝑎𝑛
}𝑛≥0 is a constant sequence.

The proof of the following lemma uses the assumption that C[𝑧] ⊆ H𝑘 .

Lemma 2.4. If H𝑘 is a semi-analytic tridiagonal space, then ker𝑀∗
𝑧 = C 𝑓0.

Proof. Clearly, (2.9) implies that 𝑓0 ∈ ker 𝑀∗
𝑧 . On the other hand, from C[𝑧] ⊆ H𝑘 we

deduce that 𝑓𝑛 = 𝑀𝑧 (𝑎𝑛𝑧𝑛−1 + 𝑏𝑛𝑧𝑛) ∈ ran𝑀𝑧 for all 𝑛 ≥ 1, and hence span{ 𝑓𝑛 : 𝑛 ≥ 1} ⊆
ran𝑀𝑧 . The result now follows from the fact that C 𝑓0 = (span{ 𝑓𝑛 : 𝑛 ≥ 1})⊥ ⊇ ker𝑀∗

𝑧 .

Now we briefly describe the construction of Shimorin’s analytic models of left-invertible
operators. Let H be a Hilbert space, and let 𝑇 ∈ B(H). We say that 𝑇 is left-invertible if
there exists 𝑋 ∈ B(H) such that 𝑋𝑇 = 𝐼H . It is easy to check that this equivalently means
that 𝑇 is bounded below, which is also equivalent to the invertibility of 𝑇∗𝑇 . Following
Shimorin, a bounded linear operator 𝑋 ∈ B(H) is analytic if

(2.10)
∞⋂
𝑛=0

𝑋𝑛H = {0}

Note that from the viewpoint of analytic Hilbert spaces, shifts are always analytic. Indeed,
let H𝑘 ⊆ O(Ω,E), where Ω ⊆ C is a domain, and suppose the shift 𝑀𝑧 is bounded on H𝑘 .
If 𝑓 ∈ ⋂∞

𝑛=0 𝑀
𝑛
𝑧H𝑘 , then for each 𝑛 ≥ 0, there exists 𝑔𝑛 ∈ H𝑘 such that 𝑓 = 𝑧𝑛𝑔𝑛. Since Ω

is a domain and 𝑓 is analytic on Ω, we see that 𝑓 ≡ 0, that is,
⋂∞

𝑛=0 𝑀
𝑛
𝑧H𝑘 = {0}.

Now let𝑇 ∈ B(H) be a bounded below operator. We call 𝐿𝑇 := (𝑇∗𝑇)−1𝑇∗ the Shimorin
left inverse, to distinguish it from other left inverses of 𝑇 (see (1.4)). Set

W = ker𝑇∗ = H ⊖ 𝑇H ,

and Ω = {𝑧 ∈ C : |𝑧 | < 1
𝑟 (𝐿𝑇 ) }, where 𝑟 (𝐿𝑇 ) is the spectral radius of 𝐿𝑇 . Then

(2.11) 𝑘𝑇 (𝑧, 𝑤) = 𝑃W (𝐼 − 𝑧𝐿𝑇 )−1 (𝐼 − �̄�𝐿∗𝑇 )−1 |W (𝑧, 𝑤 ∈ Ω),
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defines a B(W)-valued analytic kernel 𝑘𝑇 : Ω ×Ω→B(W), which we call the Shimorin
kernel of 𝑇 (see [17, Corollary 2.14]). We lose no generality by assuming, as we shall do,
that Ω = D. If, in addition, 𝑇 is analytic, then the unitary𝑈 : H → H𝑘 defined by

(2.12) (𝑈 𝑓 ) (𝑧) =
∞∑︁
𝑛=0

(𝑃W𝐿𝑛𝑇 𝑓 )𝑧𝑛 ( 𝑓 ∈ H , 𝑧 ∈ D),

satisfies𝑈𝑇 = 𝑀𝑧𝑈 [17]. More precisely, we have the following result:

Theorem 2.5 ([17]). Let 𝑇 ∈ B(H) be an analytic left-invertible operator. Then 𝑇 on H
and 𝑀𝑧 on H𝑘𝑇 are unitarily equivalent.

Denote by 𝑃W the orthogonal projection of H onto W = ker𝑇∗. It follows that

(2.13) 𝑃W = 𝐼H − 𝑇𝐿𝑇 ,

This plays an important role (in the sense of Wold decomposition of left-invertible operat-
ors) in the proof of the above theorem. The following equality will be very useful in what
follows.

Lemma 2.6. If 𝑇 is a left-invertible operator on H , then 𝐿𝑇𝐿∗𝑇 = |𝑇 |−2.

Proof. This follows from the fact that 𝐿𝑇𝐿∗𝑇 = (𝑇∗𝑇)−1𝑇∗𝑇 (𝑇∗𝑇)−1 = (𝑇∗𝑇)−1.

In the case of left-invertible weighted shifts 𝑆𝛼 (see (1.1)), it is known that the shift 𝑀𝑧

on H𝑘𝑆𝛼
corresponding to the Shimorin kernel 𝑘𝑆𝛼

is also a weighted shift (for instance,
see [13, Example 5.2] in the context of bilateral weighted shifts). Nonetheless, we sketch
the proof here for the sake of completeness.

Proposition 2.7. Let 𝑆𝛼 be the weighted shift with weights {𝛼𝑛}𝑛≥0. If {𝛼𝑛}𝑛≥0 is bounded
away from zero, then 𝑆𝛼 is left-invertible, and the Shimorin kernel 𝑘𝑆𝛼

is diagonal.

Proof. Let {𝑒𝑛}𝑛≥0 be an orthonormal basis of a Hilbert space H , and let 𝑆𝛼𝑒𝑛 = 𝛼𝑛𝑒𝑛+1
for all 𝑛 ≥ 0. Observe that 𝑆∗𝛼𝑒𝑛 = 𝛼𝑛−1𝑒𝑛−1, 𝑛 ≥ 1, and 𝑆∗𝛼𝑒0 = 0. ThenW = ker 𝑆∗𝛼 = C𝑒0,
and

𝑆∗𝛼𝑆𝛼𝑒𝑛 = 𝛼2
𝑛𝑒𝑛 (𝑛 ≥ 0).

Since 𝑆∗𝛼𝑆𝛼 is a diagonal operator and {𝛼𝑛}𝑛≥0 is bounded away from zero, it follows
that 𝑆∗𝛼𝑆𝛼 is invertible, and hence 𝑆𝛼 is left-invertible. Then the Shimorin left inverse
𝐿𝑆𝛼

:= (𝑆∗𝛼𝑆𝛼)−1𝑆∗𝛼 is given by

(2.14) 𝐿𝑆𝛼
𝑒𝑛 =

{
0 if 𝑛 = 0

1
𝛼𝑛−1

𝑒𝑛−1 if 𝑛 ≥ 1.

Therefore, 𝐿𝑆𝛼
is the backward shift, and

(2.15) 𝐿𝑚𝑆𝛼
𝑒𝑛 =


0 if 𝑚 > 𝑛

1
𝛼0 · · ·𝛼𝑛−1

𝑒0 if 𝑚 = 𝑛
1

𝛼𝑛−1 · · ·𝛼𝑛−𝑚
𝑒𝑛−𝑚 if 𝑚 < 𝑛,
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for all 𝑚 ≥ 1. Moreover

𝐿∗𝑚𝑆𝛼
𝑒𝑛 =

1
𝛼𝑛𝛼𝑛+1 · · · 𝛼𝑛+𝑚−1

𝑒𝑛+𝑚,

for all 𝑛 ≥ 0 and 𝑚 ≥ 1. In particular

𝐿∗𝑚𝑆𝛼
𝑒0 =

1
𝛼0𝛼1 · · · 𝛼𝑚−1

𝑒𝑚 (𝑚 ≥ 1),

and thus, for each (𝑚, 𝑛) ≠ (0, 0), we have clearly

𝑃W𝐿𝑚𝑆𝛼
𝐿∗𝑛𝑆𝛼

𝑒0 =

{
0 if 𝑚 ≠ 𝑛

1
(𝛼0 · · ·𝛼𝑛−1 )2 𝑒0 if 𝑚 = 𝑛.

This immediately gives

𝑘𝑆𝛼
(𝑧, 𝑤) =

∞∑︁
𝑛=0

(𝑃W𝐿𝑛𝑆𝛼
𝐿∗𝑛𝑆𝛼

|W) (𝑧�̄�)𝑛 (𝑧, 𝑤 ∈ D),

whereW = C𝑒0. In particular, the Shimorin kernel 𝑘𝑆𝛼
is a diagonal kernel. Finally, identi-

fying W with C and setting 𝛽𝑛 = 1
𝛼0 · · ·𝛼𝑛−1

, 𝑛 ≥ 1, we get

𝑘𝑆𝛼
(𝑧, 𝑤) = 1 +

∞∑︁
𝑛=1

1
𝛽2
𝑛

(𝑧�̄�)𝑛 (𝑧, 𝑤 ∈ D).

Notice in the above, the Shimorin left inverse 𝐿𝑆𝛼
is the backward shift corresponding

to the weight sequence { 1
𝛼𝑛

}𝑛≥0, that is,

𝐿𝑆𝛼
=



0 1
𝛼0

0 0 . . .

0 0 1
𝛼1

0
. . .

0 0 0 1
𝛼2

. . .

0 0 0 0
. . .

...
...

...
. . .

. . .


.

In the setting of Proposition 2.7, we now turn to the unitary map𝑈 : H →H𝑘𝑆𝛼
, where

H𝑘𝑆𝛼
⊆ O(D,W), and

(𝑈 𝑓 ) (𝑧) =
∞∑︁
𝑛=0

(𝑃W𝐿𝑛𝑆𝛼
𝑓 )𝑧𝑛,

for all 𝑓 ∈ H and 𝑧 ∈ D (see (2.12)). Set 𝑓𝑛 = 𝑈𝑒𝑛, 𝑛 ≥ 0. Since W = C𝑒0, (2.14) yields
𝑓0 = 𝑈𝑒0 = 𝑃W𝑒0 = 𝑒0. On the other hand, if 𝑛 ≥ 1, then (2.15) implies that

𝑃W𝐿𝑚𝑆𝛼
𝑒𝑛 =

{
1
𝛽𝑛
𝑒0 if 𝑚 = 𝑛

0 otherwise,
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and hence 𝑓𝑛 = 1
𝛽𝑛
𝑧𝑛𝑒0. Therefore {𝑒0} ∪ { 1

𝛽𝑛
𝑧𝑛𝑒0}𝑛≥1 is the orthonormal basis of H𝑘𝑆𝛼

corresponding to𝑈. Moreover, for each 𝑛 ≥ 1, we have

𝑀𝑧 (
1
𝛽𝑛
𝑧𝑛𝑒0) =

1
𝛽𝑛
𝑧𝑛+1𝑒0 = 𝛼𝑛

1
𝛽𝑛+1

𝑧𝑛+1𝑒0 = 𝛼𝑛 (
1
𝛽𝑛+1

𝑧𝑛+1𝑒0),

and hence 𝑀𝑧 on H𝑘𝑆𝛼
is also a weighted shift with the same weights {𝛼𝑛}𝑛≥0.

3. Tridiagonal spaces and left-invertibility

The main contribution of this section is the left invertibility and representations of Shimorin
left inverses of shifts on tridiagonal reproducing kernel Hilbert spaces. Recall that the
conditions in (2.1) ensures that the shift 𝑀𝑧 is bounded on the semi-analytic tridiagonal
space H𝑘 . Here we use the remaining condition (2.3) to prove that 𝑀𝑧 is left-invertible.

Before we state and prove the result, we need to construct a specific bounded linear
operator. The choice of this operator is not accidental, as we will see in Theorem 3.4 that
it is nothing but the Shimorin left inverse of 𝑀𝑧 . For each 𝑛 ≥ 1, set

(3.1) 𝑑𝑛 =
𝑏𝑛

𝑎𝑛
− 𝑏𝑛−1

𝑎𝑛−1
.

Proposition 3.1. Let 𝑘 be an analytic tridiagonal kernel corresponding to the orthonormal
basis { 𝑓𝑛}𝑛≥0, where 𝑓𝑛 (𝑧) = (𝑎𝑛 + 𝑏𝑧𝑧)𝑧𝑛, 𝑛 ≥ 0. Then the linear operator 𝐿 represented
by

[𝐿] =



0 𝑎1
𝑎0

0 0 0 . . .

0 𝑑1
𝑎2
𝑎1

0 0
. . .

0 −𝑑1𝑏1
𝑎2

𝑑2
𝑎3
𝑎2

0
. . .

0 𝑑1𝑏1𝑏2
𝑎2𝑎3

−𝑑2𝑏2
𝑎3

𝑑3
𝑎4
𝑎3

. . .

0 −𝑑1𝑏1𝑏2𝑏3
𝑎2𝑎3𝑎4

𝑑2𝑏2𝑏3
𝑎3𝑎4

−𝑑3𝑏3
𝑎4

𝑑4
. . .

...
...

...
...

. . .
. . .


,

with respect to the orthonormal basis { 𝑓𝑛}𝑛≥0 defines a bounded linear operator on H𝑘 .

Proof. For each 𝑛 ≥ 1, we have clearly 𝑑𝑛 =
𝑏𝑛
𝑎𝑛

− 𝑏𝑛−1
𝑎𝑛−1

=
𝑎𝑛+1
𝑎𝑛

𝑏𝑛
𝑎𝑛+1

− 𝑎𝑛
𝑎𝑛−1

𝑏𝑛−1
𝑎𝑛

, and hence

|𝑑𝑛 | ≤
���𝑎𝑛+1

𝑎𝑛

������ 𝑏𝑛
𝑎𝑛+1

��� + ��� 𝑎𝑛
𝑎𝑛−1

������𝑏𝑛−1

𝑎𝑛

���.
Since {| 𝑎𝑛

𝑎𝑛+1
|}𝑛≥0 is bounded away from zero (see (2.3)), we have that sup𝑛≥0 |

𝑎𝑛+1
𝑎𝑛

| < ∞.
This and the second assumption then imply that {𝑑𝑛} is a bounded sequence.
Let 𝑆 denote the matrix obtained from [𝐿] by deleting all but the superdiagonal elements
of [𝐿]. Similarly, 𝐿0 denote the matrix obtained from [𝐿] by deleting all but the diagonal
elements of [𝐿], and in general, assume that 𝐿𝑖 denote the matrix obtained from [𝐿] by
deleting all but the 𝑖-th subdiagonal of [𝐿], 𝑖 = 0, 1, 2 . . .. Since

𝐿 = 𝑆 +
∑︁
𝑖≥0

𝐿𝑖 ,
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it clearly suffices to prove that 𝑆 and {𝐿𝑖}𝑖≥0 are bounded, and 𝑆 +∑𝑖≥0 𝐿𝑖 is absolutely con-
vergent. Note that ∥𝑆∥ = sup𝑛≥0 |

𝑎𝑛+1
𝑎𝑛

| <∞. Moreover, our assumption lim sup𝑛≥0 |
𝑏𝑛
𝑎𝑛+1

| < 1
implies that there exist 𝑟 < 1 and 𝑛0 ∈ N such that��� 𝑏𝑛

𝑎𝑛+1

��� < 𝑟 (𝑛 ≥ 𝑛0).

Set
𝑀 = sup

𝑛≥1

{��� 𝑏𝑛
𝑎𝑛+1

���, |𝑑𝑛 |}.
Then ∥𝐿𝑖 ∥ ≤ 𝑀 𝑖+1 for all 𝑖 = 0, . . . , 𝑛0, and

∥𝐿𝑖 ∥ ≤ 𝑀𝑛0+1𝑟 𝑖−𝑛0 (𝑖 > 𝑛0),

from which it follows that

∥𝑆∥ +
∑︁
𝑖≥0

∥𝐿𝑖 ∥ = sup
𝑛≥0

���𝑎𝑛+1

𝑎𝑛

��� + ∑︁
0≤𝑖≤𝑛0

∥𝐿𝑖 ∥ +
∑︁

𝑖≥𝑛0+1
∥𝐿𝑖 ∥

≤ sup
𝑛≥0

���𝑎𝑛+1

𝑎𝑛

��� + ∑︁
0≤𝑖≤𝑛0

∥𝐿𝑖 ∥ + 𝑀𝑛0+1
( ∑︁
𝑖≥𝑛0+1

𝑟 𝑖−𝑛0
)

≤ sup
𝑛≥0

���𝑎𝑛+1

𝑎𝑛

��� + ∑︁
0≤𝑖≤𝑛0

∥𝐿𝑖 ∥ + 𝑀𝑛0+1 𝑟

1 − 𝑟 ,

and completes the proof of the theorem.

We are now ready to prove that 𝑀𝑧 is left-invertible.

Theorem 3.2. In the setting of Proposition 3.1, we have 𝐿𝑀𝑧 = 𝐼H𝑘
.

Proof. We consider the matrix representations of 𝑀𝑧 and 𝐿 as in (2.8) and Proposition 3.1,
respectively. Let [𝐿] [𝑀𝑧] = (𝛼𝑚𝑛)𝑚,𝑛≥0. Clearly it suffices to prove that 𝛼𝑚𝑛 = 𝛿𝑚𝑛. It is
easy to see that 𝛼𝑚,𝑚+𝑘 = 0 for all 𝑘 ≥ 1. Now by (2.6) and (3.1), we have

(3.2) 𝑐𝑛 = − 𝑎𝑛

𝑎𝑛+2
𝑑𝑛+1 (𝑛 ≥ 0).

Note that the 𝑛-th column, 𝑛 ≥ 0, of [𝑀𝑧] is the transpose of(
0, . . . , 0︸   ︷︷   ︸

𝑛+1

,
𝑎𝑛

𝑎𝑛+1
, 𝑐𝑛,−

𝑐𝑛𝑏𝑛+2

𝑎𝑛+3
, . . . , (−1)𝑚−𝑛−2 𝑐𝑛𝑏𝑛+2 · · · 𝑏𝑚−1

𝑎𝑛+3 · · · 𝑎𝑚
, (−1)𝑚−𝑛−1 𝑐𝑛𝑏𝑛+2 · · · 𝑏𝑚

𝑎𝑛+3 · · · 𝑎𝑚+1
, . . .

)
,

and the 𝑚-th row, 𝑚 ≥ 0, of [𝐿] is given by(
0 , (−1)𝑚−1 𝑑1𝑏1 · · · 𝑏𝑚−1

𝑎2 · · · 𝑎𝑚
, (−1)𝑚−2 𝑑2𝑏2 · · · 𝑏𝑚−1

𝑎3 · · · 𝑎𝑚
, (−1)𝑚−3 𝑑3𝑏3 · · · 𝑏𝑚−1

𝑎4 · · · 𝑎𝑚
, . . .

. . . ,
−𝑑𝑚−1𝑏𝑚−1

𝑎𝑚
, 𝑑𝑚,

𝑎𝑚+1

𝑎𝑚
, 0, 0, . . .

)
.



Tridiagonal kernels, left-invertible operators and Aluthge transforms 13

Now, if 𝑛 ≤ (𝑚 − 2), then the 𝛼𝑚𝑛 (the (𝑚, 𝑛)-th entry of [𝐿] [𝑀𝑧]) is given by

𝛼𝑚𝑛 = (−1)𝑚−𝑛−1 𝑑𝑛+1𝑏𝑛+1 · · · 𝑏𝑚−1

𝑎𝑛+2 · · · 𝑎𝑚
𝑎𝑛

𝑎𝑛+1
+ (−1)𝑚−𝑛−2 𝑑𝑛+2𝑏𝑛+2 · · · 𝑏𝑚−1

𝑎𝑛+3 · · · 𝑎𝑚
𝑐𝑛

+ (−1)𝑚−𝑛−3 𝑑𝑛+3𝑏𝑛+3 · · · 𝑏𝑚−1

𝑎𝑛+4 · · · 𝑎𝑚
(−𝑐𝑛

𝑏𝑛+2

𝑎𝑛+3
) + · · · + (−𝑑𝑚−1𝑏𝑚−1

𝑎𝑚
) (−1)𝑚−𝑛−3×

𝑐𝑛
𝑏𝑛+2 · · · 𝑏𝑚−2

𝑎𝑛+3 · · · 𝑎𝑚−1
+ 𝑑𝑚 (−1)𝑚−𝑛−2𝑐𝑛

𝑏𝑛+2 · · · 𝑏𝑚−1

𝑎𝑛+3 · · · 𝑎𝑚
+ 𝑎𝑚+1

𝑎𝑚
(−1)𝑚−𝑛−1𝑐𝑛

𝑏𝑛+2 · · · 𝑏𝑚
𝑎𝑛+3 · · · 𝑎𝑚𝑎𝑚+1

,

and hence, using (3.2), we obtain

𝛼𝑚𝑛 = (−1)𝑚−𝑛−1𝑑𝑛+1
𝑎𝑛𝑏𝑛+1 · · · 𝑏𝑚−1

𝑎𝑛+1𝑎𝑛+2 · · · 𝑎𝑚
+ (−1)𝑚−𝑛−2 (− 𝑎𝑛

𝑎𝑛+2
𝑑𝑛+1)

𝑑𝑛+2𝑏𝑛+2 · · · 𝑏𝑚−1

𝑎𝑛+3 · · · 𝑎𝑚
+

(−1)𝑚−𝑛−2 (− 𝑎𝑛

𝑎𝑛+2
𝑑𝑛+1) (

𝑏𝑛+2

𝑎𝑛+3
) ( 𝑑𝑛+3𝑏𝑛+3 · · · 𝑏𝑚−1

𝑎𝑛+4 · · · 𝑎𝑚
) + · · · +

· · · + (−1)𝑚−𝑛−2 (− 𝑎𝑛

𝑎𝑛+2
𝑑𝑛+1)

𝑑𝑚−1𝑏𝑛+2 · · · 𝑏𝑚−1

𝑎𝑛+3 · · · 𝑎𝑚
+

(−1)𝑚−𝑛−2 (− 𝑎𝑛

𝑎𝑛+2
𝑑𝑛+1)

𝑑𝑚𝑏𝑛+2 · · · 𝑏𝑚−1

𝑎𝑛+3 · · · 𝑎𝑚
+ (−1)𝑚−𝑛−1 (− 𝑎𝑛

𝑎𝑛+2
𝑑𝑛+1) (

𝑏𝑛+2 · · · 𝑏𝑚
𝑎𝑛+3 · · · 𝑎2

𝑚

)

= (−1)𝑚−𝑛−1𝑑𝑛+1

( 𝑎𝑛𝑏𝑛+1 · · · 𝑏𝑚−1

𝑎𝑛+1𝑎𝑛+2 · · · 𝑎𝑚
+ 𝑎𝑛𝑏𝑛+2 · · · 𝑏𝑚−1

𝑎𝑛+2𝑎𝑛+3 · · · 𝑎𝑚
𝑑𝑛+2 +

𝑎𝑛𝑏𝑛+2 · · · 𝑏𝑚−1

𝑎𝑛+2𝑎𝑛+3 · · · 𝑎𝑚
𝑑𝑛+3+

· · · + 𝑎𝑛𝑏𝑛+2 · · · 𝑏𝑚−1

𝑎𝑛+2𝑎𝑛+3 · · · 𝑎𝑚
𝑑𝑚−1 +

𝑎𝑛𝑏𝑛+2 · · · 𝑏𝑚−1

𝑎𝑛+2𝑎𝑛+3 · · · 𝑎𝑚
𝑑𝑚 − 𝑎𝑛𝑏𝑛+2 · · · 𝑏𝑚

𝑎𝑛+2𝑎𝑛+3 · · · 𝑎2
𝑚

)
= (−1)𝑚−𝑛−1𝑑𝑛+1

𝑎𝑛𝑏𝑛+2 · · · 𝑏𝑚−1

𝑎𝑛+2𝑎𝑛+3 · · · 𝑎𝑚

(
𝑏𝑛+1

𝑎𝑛+1
+ (𝑑𝑛+2 + 𝑑𝑛+3 + · · · + 𝑑𝑚−1 + 𝑑𝑚) −

𝑏𝑚

𝑎𝑚

)
.

Recall from (3.1) that 𝑑𝑛 =
𝑏𝑛
𝑎𝑛

− 𝑏𝑛−1
𝑎𝑛−1

, 𝑛 ≥ 1. Then

𝛼𝑚𝑛 = (−1)𝑚−𝑛−1𝑑𝑛+1
𝑎𝑛𝑏𝑛+2 · · · 𝑏𝑚−1

𝑎𝑛+2𝑎𝑛+3 · · · 𝑎𝑚

(
( 𝑏𝑛+1

𝑎𝑛+1
− 𝑏𝑚

𝑎𝑚
) + ( 𝑏𝑚

𝑎𝑚
− 𝑏𝑛+1

𝑎𝑛+1
)
)
= 0.

For the case 𝑛 = 𝑚 − 1, we have

𝛼𝑚,𝑚−1 = 𝑑𝑚 (
𝑎𝑚−1

𝑎𝑚
) + 𝑎𝑚+1

𝑎𝑚
(𝑐𝑚−1) = ( 𝑎𝑚−1

𝑎𝑚
)𝑑𝑚 + 𝑎𝑚+1

𝑎𝑚
(−𝑎𝑚−1

𝑎𝑚+1
𝑑𝑚) = 0,

and finally, 𝛼𝑚𝑚 = ( 𝑎𝑚+1
𝑎𝑚

) ( 𝑎𝑚
𝑎𝑚+1

) = 1 completes the proof.

In view of Theorem 3.2, let us point out, in particular (see the discussion following
(2.10)), that shifts on analytic tridiagonal spaces are always analytic:

Proposition 3.3. If 𝑘 is an analytic tridiagonal kernel, then𝑀𝑧 is an analytic left-invertible
operator on H𝑘 .

Now let H𝑘 be an analytic tridiagonal space. Our aim is to compute the Shimorin left
inverse 𝐿𝑀𝑧

= (𝑀∗
𝑧𝑀𝑧)−1𝑀∗

𝑧 of 𝑀𝑧 on H𝑘 . What we prove in fact is that 𝐿 in Proposition
3.1 is the Shimorin left inverse of 𝑀𝑧 . First note that

(3.3) 𝐿𝑀𝑧
𝑧𝑛 = 𝑧𝑛−1 (𝑛 ≥ 1).
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Indeed

𝐿𝑀𝑧
𝑧𝑛 = (𝑀∗

𝑧𝑀𝑧)−1𝑀∗
𝑧𝑀𝑧𝑧

𝑛−1

= (𝑀∗
𝑧𝑀𝑧)−1 (𝑀∗

𝑧𝑀𝑧)𝑧𝑛−1.

Therefore, 𝐿𝑀𝑧
is the backward shift onH𝑘 (a well known fact about Shimorin left inverses).

On the other hand, by Lemma 2.4 we have

𝐿𝑀𝑧
𝑓0 = (𝑀∗

𝑧𝑀𝑧)−1𝑀∗
𝑧 𝑓0 = 0,

and hence 𝐿𝑀𝑧
𝑓0 = 0, which in particular yields

(3.4) 𝐿𝑀𝑧
1 = −𝑏0

𝑎0
.

Let 𝑛 ≥ 1. Using (3.1), we have 𝐿𝑀𝑧
𝑓𝑛 = 𝐿𝑀𝑧

(𝑎𝑛𝑧𝑛 + 𝑏𝑛𝑧𝑛+1) = 𝑎𝑛𝑧𝑛−1 + 𝑏𝑛𝑧𝑛, which
implies

𝐿𝑀𝑧
𝑓𝑛 =

𝑎𝑛

𝑎𝑛−1
(𝑎𝑛−1𝑧

𝑛−1 + 𝑏𝑛−1𝑧
𝑛) + (𝑏𝑛 −

𝑎𝑛𝑏𝑛−1

𝑎𝑛−1
)𝑧𝑛 =

𝑎𝑛

𝑎𝑛−1
𝑓𝑛−1 + 𝑑𝑛𝑎𝑛𝑧𝑛,

and hence 𝐿𝑀𝑧
𝑓𝑛 =

𝑎𝑛
𝑎𝑛−1

𝑓𝑛−1 + 𝑑𝑛 (𝑎𝑛𝑧𝑛 + 𝑏𝑛𝑧𝑛+1) − 𝑑𝑛𝑏𝑛𝑧𝑛+1. By (2.4), we have

𝐿𝑀𝑧
𝑓𝑛 =

𝑎𝑛

𝑎𝑛−1
𝑓𝑛−1 + 𝑑𝑛 𝑓𝑛 − 𝑑𝑛

( ∞∑︁
𝑚=0

(−1)𝑚
∏𝑚

𝑗=0 𝑏𝑛+ 𝑗∏𝑚
𝑗=0 𝑎𝑛+1+ 𝑗

𝑓𝑛+1+𝑚
)
.

This is precisely the left inverse 𝐿 of 𝑀𝑧 in Proposition 3.1. Whence the next statement:

Theorem 3.4. Let H𝑘 be an analytic tridiagonal space. If 𝐿 is as in Proposition 3.1, then
the Shimorin left inverse 𝐿𝑀𝑧

of 𝑀𝑧 is given by 𝐿𝑀𝑧
= 𝐿. In particular, 𝐿𝑀𝑧

𝑓0 = 0, and

𝐿𝑀𝑧
𝑓𝑛 =

𝑎𝑛

𝑎𝑛−1
𝑓𝑛−1 + 𝑑𝑛 𝑓𝑛 − 𝑑𝑛

( ∞∑︁
𝑚=0

(−1)𝑚
∏𝑚

𝑗=0 𝑏𝑛+ 𝑗∏𝑚
𝑗=0 𝑎𝑛+1+ 𝑗

𝑓𝑛+1+𝑚
)

(𝑛 ≥ 1),

where 𝑑𝑛 = 𝑏𝑛
𝑎𝑛

− 𝑏𝑛−1
𝑎𝑛−1

for all 𝑛 ≥ 1. Moreover, the matrix representation of 𝐿𝑀𝑧
with respect

to the orthonormal basis { 𝑓𝑛}𝑛≥0 is given by

[𝐿𝑀𝑧
] =



0 𝑎1
𝑎0

0 0 0 . . .

0 𝑑1
𝑎2
𝑎1

0 0
. . .

0 −𝑑1𝑏1
𝑎2

𝑑2
𝑎3
𝑎2

0
. . .

0 𝑑1𝑏1𝑏2
𝑎2𝑎3

−𝑑2𝑏2
𝑎3

𝑑3
𝑎4
𝑎3

. . .

0 −𝑑1𝑏1𝑏2𝑏3
𝑎2𝑎3𝑎4

𝑑2𝑏2𝑏3
𝑎3𝑎4

−𝑑3𝑏3
𝑎4

𝑑4
. . .

...
...

...
...

. . .
. . .


.

Next we verify that the bounded away assumption of {| 𝑎𝑛
𝑎𝑛+1

|}𝑛≥0 in (2.3) is also a
necessary condition for left-invertible shifts.
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Theorem 3.5. LetH𝑘 be a semi-analytic tridiagonal space corresponding to the orthonor-
mal basis { 𝑓𝑛}𝑛≥0, where 𝑓𝑛 (𝑧) = (𝑎𝑛 + 𝑏𝑛𝑧)𝑧𝑛, 𝑛 ≥ 0. Then𝑀𝑧 is left-invertible if and only
if {| 𝑎𝑛

𝑎𝑛+1
|}𝑛≥0 is bounded away from zero, or equivalently, H𝑘 is an analytic tridiagonal

space.

Proof. In view of Theorem 3.2 we only need to prove the necessary part. Consider the
Shimorin left inverse 𝐿𝑀𝑧

= (𝑀∗
𝑧𝑀𝑧)−1𝑀∗

𝑧 . Using the fact that C[𝑧] ⊆ H𝑘 , one can show,
along the similar line of computation preceding Theorem 3.4 (note that, by assumption,
𝐿𝑀𝑧

is bounded), that the matrix representation of 𝐿𝑀𝑧
with respect to the orthonormal

basis { 𝑓𝑛}𝑛≥0 is precisely given by the one in Theorem 3.4. Then for each 𝑛 ≥ 0, we have

∥(𝑀∗
𝑧𝑀𝑧)−1𝑀∗

𝑧 ∥B(H𝑘 ) ≥ ∥(𝑀∗
𝑧𝑀𝑧)−1𝑀∗

𝑧 𝑓𝑛∥H𝑘
≥
���𝑎𝑛+1

𝑎𝑛

���,
which implies that ��� 𝑎𝑛

𝑎𝑛+1

��� ≥ 1
∥(𝑀∗

𝑧𝑀𝑧)−1𝑀∗
𝑧 ∥B(H𝑘 )

,

and hence the sequence is bounded away from zero.

4. Tridiagonal Shimorin models

As emphasized already in Proposition 2.7 that if 𝑘 is a diagonal kernel, then 𝑘𝑀𝑧
is also

a diagonal kernel. However, as we will see in the example below, Shimorin kernels are
not compatible with tridiagonal kernels. This consequently motivates one to ask: How
to determine whether or not the Shimorin kernel 𝑘𝑀𝑧

of a tridiagonal kernel 𝑘 is also
tridiagonal? We have a complete answer to this question: 𝑘𝑀𝑧

is tridiagonal if and only if
𝑏0 = 0 or that 𝑀𝑧 is a weighted shift on H𝑘 . This is the main content of this section.

Example 4.1. Let 𝑎𝑛 = 1 for all 𝑛 ≥ 0, 𝑏0 =
1
2 , and let 𝑏𝑛 = 0 for all 𝑛 ≥ 1. Let H𝑘 denote

the analytic tridiagonal space corresponding to the orthonormal basis { 𝑓𝑛}𝑛≥0, where
𝑓𝑛 = (𝑎𝑛 + 𝑏𝑛𝑧)𝑧𝑛 for all 𝑛 ≥ 0. Since 𝑓0 = 1 + 1

2 𝑧 and 𝑓𝑛 = 𝑧𝑛 for all 𝑛 ≥ 1, by (2.8), we
have

[𝑀𝑧] =



0 0 0 0 . . .

1 0 0 0
. . .

1
2 1 0 0

. . .

0 0 1 0
. . .

...
...

...
. . .

. . .


.
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By Theorem 3.4, the Shimorin left inverse 𝐿𝑀𝑧
= (𝑀∗

𝑧𝑀𝑧)−1𝑀∗
𝑧 is given by

𝐿𝑀𝑧
=



0 1 0 0 0 . . .

0 −1
2 1 0 0

. . .

0 0 0 1 0
. . .

0 0 0 0 1
. . .

...
...

...
...

. . .
. . .


.

Recall, in this case, that W = C 𝑓0. It is easy to check that 𝐿𝑀𝑧
𝑓1 = 𝑓0 − 1

2 𝑓1, 𝐿∗
𝑀𝑧
𝑓0 = 𝑓1,

𝐿∗
𝑀𝑧
𝑓1 = − 1

2 𝑓1 + 𝑓2, and 𝐿∗
𝑀𝑧
𝑓2 = 𝑓3. Then

𝐿∗3
𝑀𝑧
𝑓0 = −1

2
𝐿∗𝑀𝑧

𝑓1 + 𝐿∗𝑀𝑧
𝑓2 =

1
4
𝑓1 −

1
2
𝑓2 + 𝑓3,

and hence 𝑃W𝐿𝑀𝑧
𝐿∗3
𝑀𝑧
𝑓0 =

1
4𝑃W (𝐿𝑀𝑧

𝑓1), as 𝑃W𝐿𝑀𝑧
𝑓 𝑗 = 0 for all 𝑗 ≠ 1. Consequently

𝑃W𝐿𝑀𝑧
𝐿∗3
𝑀𝑧
𝑓0 =

1
4
𝑓0 ≠ 0,

which implies that the Shimorin kernel 𝑘𝑀𝑧
, as defined in (2.11), is not a tridiagonal kernel.

Throughout this section, H𝑘 will be an analytic tridiagonal space corresponding to the
orthonormal basis { 𝑓𝑛}𝑛≥0, where 𝑓𝑛 (𝑧) = (𝑎𝑛 + 𝑏𝑛𝑧)𝑧𝑛, 𝑛 ≥ 0. Recall that the Shimorin
kernel 𝑘𝑀𝑧

: D × D→ B(W) is given by (see (2.11) and also Theorem 2.5)

𝑘𝑀𝑧
(𝑧, 𝑤) = 𝑃W (𝐼 − 𝑧𝐿𝑀𝑧

)−1 (𝐼 − �̄�𝐿∗𝑀𝑧
)−1 |W (𝑧, 𝑤 ∈ D).

Here, of course, W = C 𝑓0, the one-dimensional space generated by the vector 𝑓0. So one
may regard 𝑘𝑀𝑧

as a scalar kernel. We are now ready for the main result of this section.

Theorem 4.2. The Shimorin kernel 𝑘𝑀𝑧
of 𝑀𝑧 is tridiagonal if and only if 𝑀𝑧 on H𝑘 is a

weighted shift or
𝑏0 = 0.

Proof. We split the proof into several steps.
Step 1: We first denote 𝐿𝑀𝑧

= 𝐿 and

𝑋𝑚𝑛 = 𝑃W𝐿𝑚𝐿∗𝑛 |W (𝑚, 𝑛 ≥ 0),

for simplicity. First observe that Theorem 3.4 implies that 𝐿𝑚 𝑓0 = 0, 𝑚 ≥ 1, and hence,
𝑋𝑚0 = 0 = 𝑋∗

𝑚0 = 𝑋0𝑚 for all𝑚 ≥ 1. Then the formal matrix representation of the Shimorin
kernel 𝑘𝑀𝑧

is given by

(4.1) [𝑘𝑀𝑧
] =



𝐼W 0 0 0 . . .

0 𝑋11 𝑋12 𝑋13 . . .

0 𝑋∗
12 𝑋22 𝑋23 . . .

0 𝑋∗
13 𝑋∗

23 𝑋33 . . .
...

...
...

. . .
. . .


.
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Clearly, in view of the above, 𝑘𝑀𝑧
is tridiagonal if and only if 𝑋𝑚𝑛 𝑓0 = 0 for all 𝑚, 𝑛 ≠ 0

and |𝑚 − 𝑛| ≥ 2.
Step 2: In this step we aim to compute matrix representations of 𝐿 𝑝 and 𝐿∗𝑝 , 𝑝 ≥ 1, with
respect to the orthonormal basis { 𝑓𝑛}𝑛≥0. The matrix representation of [𝐿] in Theorem 3.4
is instructive. It also follows that

(4.2) [𝐿∗] =



0 0 0 0 0 . . .
�̄�1
�̄�0

𝑑1
−𝑑1 �̄�1
�̄�2

𝑑1 �̄�1 �̄�2
�̄�2 �̄�3

−𝑑1 �̄�1 �̄�2 �̄�3
�̄�2 �̄�3 �̄�4

. . .

0 �̄�2
�̄�1

𝑑2
−𝑑2 �̄�2
�̄�3

𝑑2 �̄�2 �̄�3
�̄�3 �̄�4

. . .

0 0 �̄�3
�̄�2

𝑑3
−𝑑3 �̄�3
�̄�4

. . .

0 0 0 �̄�4
�̄�3

𝑑4
. . .

0 0 0 0 �̄�5
�̄�4

. . .

...
...

...
...

. . .
. . .



.

Here we redo the construction taking into account the general 𝑝 ≥ 1, and proceed as in the
proof of Theorem 3.4. However, the proof is by no means the same and the general case is
quite involved. Assume that 𝑛 ≥ 1. We need to consider two cases: 𝑛 ≥ 𝑝 and 𝑛 ≤ 𝑝 − 1.
Suppose 𝑛 ≥ 𝑝. By (3.3) and (3.4), we have

𝐿 𝑝 𝑓𝑛 = 𝑎𝑛𝐿
𝑝𝑧𝑛 + 𝑏𝑛𝐿 𝑝𝑧𝑛+1 = 𝑎𝑛𝑧

𝑛−𝑝 + 𝑏𝑛𝑧𝑛−𝑝+1,

which implies

𝐿 𝑝 𝑓𝑛 =
𝑎𝑛

𝑎𝑛−𝑝

(𝑎𝑛−𝑝𝑧
𝑛−𝑝 + 𝑏𝑛−𝑝𝑧

𝑛−𝑝+1) + (𝑏𝑛 −
𝑎𝑛

𝑎𝑛−𝑝

𝑏𝑛−𝑝)𝑧𝑛−𝑝+1 =
𝑎𝑛

𝑎𝑛−𝑝

𝑓𝑛−𝑝 + 𝑑 (𝑝)𝑛 𝑧𝑛−𝑝+1,

where

(4.3) 𝑑
(𝑝)
𝑛 = 𝑏𝑛 −

𝑎𝑛

𝑎𝑛−𝑝

𝑏𝑛−𝑝 (𝑛 ≥ 𝑝).

Hence by (2.4)

𝐿 𝑝 𝑓𝑛 =
𝑎𝑛

𝑎𝑛−𝑝

𝑓𝑛−𝑝 + 𝑑
(𝑝)
𝑛

𝑎𝑛−𝑝+1

(
𝑓𝑛−𝑝+1 −

𝑏𝑛−𝑝+1

𝑎𝑛−𝑝+2
𝑓𝑛−𝑝+2 +

𝑏𝑛−𝑝+1𝑏𝑛−𝑝+2

𝑎𝑛−𝑝+2𝑎𝑛−𝑝+3
𝑓𝑛−𝑝+3 − · · ·

)
,

that is

𝐿 𝑝 𝑓𝑛 =
𝑎𝑛

𝑎𝑛−𝑝

𝑓𝑛−𝑝 + 𝑑
(𝑝)
𝑛

𝑎𝑛−𝑝+1

∞∑︁
𝑚=0

(−1)𝑚
(∏𝑚−1

𝑗=0 𝑏𝑛−𝑝+ 𝑗+1∏𝑚−1
𝑗=0 𝑎𝑛−𝑝+ 𝑗+2

)
𝑓𝑛−𝑝+𝑚+1,

for all 𝑛 ≥ 𝑝. Here and in what follows, we define
∏−1

𝑗=0 𝑥 𝑗 := 1.
We now let 𝑝 = 1 and 𝑛 = 1. Then by Theorem 3.4, we have

(4.4) 𝐿 𝑓1 =
𝑎1

𝑎0
𝑓0 + 𝑑1 𝑓1 + (−𝑑1𝑏1

𝑎2
) 𝑓2 + ( 𝑑1𝑏1𝑏2

𝑎2𝑎3
) 𝑓3 + · · · .
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Finally, let 1 ≤ 𝑛 ≤ 𝑝 − 1. Then 𝑝 > 1, and again by (3.3) and (3.4), we have

𝐿 𝑝 𝑓𝑛 = 𝐿 𝑝 (𝑎𝑛𝑧𝑛 + 𝑏𝑛𝑧𝑛+1) = 𝑎𝑛𝐿 𝑝−𝑛1 + 𝑏𝑛𝐿 𝑝−𝑛−11 = 𝑎𝑛

(−𝑏0

𝑎0

) 𝑝−𝑛
+ 𝑏𝑛

(−𝑏0

𝑎0

) 𝑝−𝑛−1
,

and hence 𝐿 𝑝 𝑓𝑛 = 𝑎𝑛

(
−𝑏0
𝑎0

) 𝑝−𝑛−1 [
𝑏𝑛
𝑎𝑛

− 𝑏0
𝑎0

]
. We set

(4.5) 𝛽𝑛 =
𝑏𝑛

𝑎𝑛
− 𝑏0

𝑎0
(𝑛 ≥ 1),

and

(4.6) 𝛽
(𝑝)
𝑛 = 𝑎𝑛

(−𝑏0

𝑎0

) 𝑝−𝑛−1
𝛽𝑛 (1 ≤ 𝑛 ≤ 𝑝 − 1).

Then 𝐿 𝑝 𝑓𝑛 = 𝛽
(𝑝)
𝑛 and (2.4) implies that

𝐿 𝑝 ( 𝑓𝑛) =
𝛽
(𝑝)
𝑛

𝑎0

∞∑︁
𝑚=0

(−1)𝑚
( Π𝑚−1

𝑗=0 𝑏 𝑗

Π𝑚−1
𝑗=0 𝑎 𝑗+1

)
𝑓𝑚,

for all 1 ≤ 𝑛 ≤ 𝑝 − 1. Then

(4.7) [𝐿2] =



0 𝛽
(2)
1
𝑎0

𝑎2
𝑎0

0 0 . . .

0 − 𝛽
(2)
1 𝑏0
𝑎0𝑎1

𝑑
(2)
2
𝑎1

𝑎3
𝑎1

0
. . .

0 𝛽
(2)
1 𝑏0𝑏1
𝑎0𝑎1𝑎2

− 𝑑
(2)
2 𝑏1
𝑎1𝑎2

𝑑
(2)
3
𝑎2

𝑎4
𝑎2

. . .

0 − 𝛽
(2)
1 𝑏0𝑏1𝑏2
𝑎0𝑎1𝑎2𝑎3

𝑑
(2)
2 𝑏1𝑏2
𝑎1𝑎2𝑎3

− 𝑑
(2)
3 𝑏2
𝑎2𝑎3

𝑑
(2)
4
𝑎3

. . .

...
...

...
...

. . .
. . .


,

and in general, for each 𝑝 ≥ 2, we have
(4.8)

[𝐿 𝑝] =



0 𝛽
(𝑝)
1
𝑎0

𝛽
(𝑝)
2
𝑎0

· · ·
𝛽
(𝑝)
𝑝−1
𝑎0

𝑎𝑝

𝑎0
0 0 · · ·

0 − 𝛽
(𝑝)
1 𝑏0
𝑎0𝑎1

− 𝛽
(𝑝)
2 𝑏0
𝑎0𝑎1

· · · −
𝛽
(𝑝)
𝑝−1𝑏0

𝑎0𝑎1

𝑑
(𝑝)
𝑝

𝑎1

𝑎𝑝+1
𝑎1

0
. . .

0 𝛽
(𝑝)
1 𝑏0𝑏1
𝑎0𝑎1𝑎2

𝛽
(𝑝)
2 𝑏0𝑏1
𝑎0𝑎1𝑎2

· · ·
𝛽
(𝑝)
𝑝−1𝑏0𝑏1

𝑎0𝑎1𝑎2
− 𝑑

(𝑝)
𝑝 𝑏1
𝑎1𝑎2

𝑑
(𝑝)
𝑝+1
𝑎2

𝑎𝑝+2
𝑎2

. . .

0 − 𝛽
(𝑝)
1 𝑏0𝑏1𝑏2
𝑎0𝑎1𝑎2𝑎3

− 𝛽
(𝑝)
2 𝑏0𝑏1𝑏2
𝑎0𝑎1𝑎2𝑎3

· · · −
𝛽
(𝑝)
𝑝−1𝑏0𝑏1𝑏2

𝑎0𝑎1𝑎2𝑎3

𝑑
(𝑝)
𝑝 𝑏1𝑏2
𝑎1𝑎2𝑎3

−
𝑑
(𝑝)
𝑝+1𝑏2

𝑎2𝑎3

𝑑
(𝑝)
𝑝+2
𝑎3

. . .

...
...

...
...

...
...

...
. . .

. . .


.
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Hence, for each 𝑝 ≥ 2, we have

(4.9) [𝐿∗𝑝] =



0 0 0 0 . . .

𝛽
(𝑝)
1
�̄�0

− 𝛽
(𝑝)
1 �̄�0
�̄�0 �̄�1

𝛽
(𝑝)
1 �̄�0 �̄�1
�̄�0 �̄�1 �̄�2

− 𝛽
(𝑝)
1 �̄�0 �̄�1 �̄�2
�̄�0 �̄�1 �̄�2 �̄�3

. . .

𝛽
(𝑝)
2
�̄�0

− 𝛽
(𝑝)
2 �̄�0
�̄�0 �̄�1

𝛽
(𝑝)
2 �̄�0 �̄�1
�̄�0 �̄�1 �̄�2

− 𝛽
(𝑝)
2 �̄�0 �̄�1 �̄�2
�̄�0 �̄�1 �̄�2 �̄�3

. . .

...
...

...
...

. . .

𝛽
(𝑝)
𝑝−1
�̄�0

−
𝛽
(𝑝)
𝑝−1 �̄�0

�̄�0 �̄�1

𝛽
(𝑝)
𝑝−1 �̄�0 �̄�1

�̄�0 �̄�1 �̄�2
−

𝛽
(𝑝)
𝑝−1 �̄�0 �̄�1 �̄�2

�̄�0 �̄�1 �̄�2 �̄�3

. . .

�̄�𝑝

�̄�0

𝑑
(𝑝)
𝑝

�̄�1
− 𝑑

(𝑝)
𝑝 �̄�1
�̄�1 �̄�2

𝑑
(𝑝)
𝑝 �̄�1 �̄�2
�̄�1 �̄�2 �̄�3

. . .

0 �̄�𝑝+1
�̄�1

𝑑
(𝑝)
𝑝+1
�̄�2

−
𝑑
(𝑝)
𝑝+1 �̄�2

�̄�2 �̄�3

. . .

0 0 �̄�𝑝+2
�̄�2

𝑑
(𝑝)
𝑝+2
�̄�3

. . .

...
...

...
...

. . .



.

Step 3: We now identify condition on the sequence {𝛽 (𝑛+2)
𝑛 }𝑛≥1 implied by the requirement

that 𝑋𝑚,𝑚+2 = 0, 𝑚 ≥ 1. Before proceeding further, we record here the following crucial
observation: Suppose 𝛽 (𝑝)𝑛 = 0 for some 𝑝 and 𝑛 such that 1 ≤ 𝑛 ≤ 𝑝 − 1. Then by (4.6),
we have

(4.10) 𝛽
(𝑞)
𝑛 = 0 (𝑞 ≥ 𝑝).

Now assume 𝑚 ≥ 1. The matrix representation in (4.9) implies

(4.11) 𝐿∗𝑚+2 𝑓0 =
1
�̄�0

(
𝛽
(𝑚+2)
1 𝑓1 + 𝛽 (𝑚+2)

2 𝑓2 + · · · + 𝛽 (𝑚+2)
𝑚+1 𝑓𝑚+1 + �̄�𝑚+2 𝑓𝑚+2

)
.

Observe that, by Theorem 3.4, we have

𝑃W𝐿 ( 𝑓𝑖) =
{

𝑎1
𝑎0
𝑓0 if 𝑖 = 1

0 if 𝑖 ≠ 1.

Let us now assume that 𝑚 ≥ 2. Then (4.8) implies

(4.12) 𝑃W𝐿𝑚 ( 𝑓𝑖) =


𝛽
(𝑚)
𝑖

𝑎0
𝑓0 if 1 ≤ 𝑖 ≤ 𝑚 − 1

𝑎𝑚
𝑎0
𝑓0 if 𝑖 = 𝑚

0 if 𝑖 ≥ 𝑚 + 1.

Since 𝑋𝑚,𝑚+2 = 𝑃W𝐿𝑚𝐿∗𝑚+2 |W , this yields

(4.13) 𝑋𝑚,𝑚+2 𝑓0 =
1

|𝑎0 |2
(
𝛽
(𝑚+2)
1 𝛽

(𝑚)
1 + 𝛽 (𝑚+2)

2 𝛽
(𝑚)
2 + · · · + 𝛽 (𝑚+2)

𝑚−1 𝛽
(𝑚)
𝑚−1 + 𝛽

(𝑚+2)
𝑚 𝑎𝑚

)
𝑓0.

In particular, if 𝑚 = 1, then we have

𝑋13 𝑓0 =
1
�̄�0

(
𝛽
(3)
1
𝑎1

𝑎0

)
𝑓0,
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and hence 𝑋13 = 0 if and only if 𝛽 (3)1 = 0. By (4.13), applied with 𝑚 = 2 we have

𝑋24 𝑓0 =
1

|𝑎0 |2
(
𝛽
(4)
1 𝛽

(2)
1 + 𝛽 (4)2 𝑎2

)
𝑓0.

Assume that 𝛽 (3)1 = 0. By (4.10), we have 𝛽 (4)1 = 0, and, consequently

𝑋24 𝑓0 = 𝛽
(4)
2

𝑎2

|𝑎0 |2
𝑓0.

Hence we obtain 𝑋24 = 0 if and only if 𝛽 (4)2 = 0. Therefore, if 𝑋𝑚,𝑚+2 = 0 for all 𝑚 ≥ 1,
then by induction, it follows that 𝛽 (𝑚+2)

𝑚 = 0 for all 𝑚 ≥ 1. The converse also follows from
the above computation.

Thus we have proved: 𝑋𝑚,𝑚+2 = 0 for all 𝑚 ≥ 1 if and only if 𝛽 (𝑚+2)
𝑚 = 0 for all 𝑚 ≥ 1.

Step 4: Our aim is to prove the following claim: Suppose 𝑋𝑖,𝑖+2 = 0 for all 𝑖 = 1, . . . , 𝑚,
and 𝑚 ≥ 1. Then 𝑋𝑚𝑛 = 0 for all 𝑛 = 𝑚 + 3, 𝑚 + 4, . . ., and 𝑚 ≥ 1.
To this end, let 𝑛 = 𝑚 + 𝑗 and 𝑗 ≥ 3. Then the matrix representation in (4.9) (or the equality
(4.11)) implies

𝐿∗𝑛 𝑓0 =
1
�̄�0

(
𝛽
(𝑛)
1 𝑓1 + 𝛽 (𝑛)2 𝑓2 + · · · + 𝛽 (𝑛)

𝑛−1 𝑓𝑛−1 + �̄�𝑛 𝑓𝑛
)
,

and then

𝑃W𝐿𝑚𝐿∗𝑛 𝑓0 =

( 1
�̄�0

𝑛−1∑︁
𝑖=1

𝛽
(𝑛)
𝑖
𝑃W𝐿𝑚 ( 𝑓𝑖)

)
+ �̄�𝑛
�̄�0
𝑃W𝐿𝑚 𝑓𝑛

=
1
�̄�0

𝑚∑︁
𝑖=1

𝛽
(𝑛)
𝑖
𝑃W𝐿𝑚 ( 𝑓𝑖),

since 𝑃W𝐿𝑚 𝑓𝑖 = 0, 𝑖 > 𝑚, which follows from the matrix representation of 𝐿𝑚 in (4.8).
Hence by (4.12) (or directly from (4.8)), we have

𝑃W𝐿𝑚𝐿∗𝑛 𝑓0 =
1

|𝑎0 |2
(
𝛽
(𝑛)
1 𝛽

(𝑚)
1 + 𝛽 (𝑛)2 𝛽

(𝑚)
2 + · · · + 𝛽 (𝑛)

𝑚−1𝛽
(𝑚)
𝑚−1 + 𝑎𝑚𝛽

(𝑛)
𝑚

)
𝑓0.

Now note that 𝑋𝑖,𝑖+2 = 0, that is, 𝛽 (𝑖+2)
𝑖

= 0, 𝑖 = 1, . . . , 𝑚, by assumption. Since 𝑖 + 2 ≤ 𝑚 + 𝑗
for all 𝑖 = 1, . . . , 𝑚, by (4.10), we have

𝛽
(𝑛)
𝑖

= 𝛽
(𝑚+ 𝑗 )
𝑖

= 0 (𝑖 = 1, . . . , 𝑚).
Hence 𝑃W𝐿𝑚𝐿∗𝑛 𝑓0 = 0, that is, 𝑋𝑚,𝑚+𝑖 = 0, 𝑖 = 3, 4, . . ., which proves the claim.
Step 5: So far all we have proved is that 𝑋𝑚𝑛 = 0 for all |𝑚 − 𝑛| ≥ 2 if and only if 𝛽 (𝑚+2)

𝑚 = 0
for all 𝑚 ≥ 1. Now, by (4.6) and (4.5), we have

𝛽
(𝑛+2)
𝑛 = 𝑎𝑛

(
− 𝑏0

𝑎0

)
𝛽𝑛,

where 𝛽𝑛 =
𝑏𝑛
𝑎𝑛

− 𝑏0
𝑎0

for all 𝑛 ≥ 1. Thus 𝛽 (𝑛+2)
𝑛 = 0 for all 𝑛 ≥ 1 if and only if 𝑏0 = 0 or

𝛽𝑛 = 0 for all 𝑛 ≥ 1. On the other hand, Lemma 2.3 implies that 𝛽𝑛 = 0 for all 𝑛 ≥ 1 if and
only if 𝑀𝑧 is a weighted shift.
Finally, by Proposition 2.7, we know that if 𝑀𝑧 is a left-invertible weighted shift, then the
Shimorin kernel is also a diagonal kernel. This completes the proof of Theorem 4.2.
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5. Positive operators and tridiagonal kernels

Our aim is to classify positive operators 𝑃 on a tridiagonal space H𝑘 such that

D × D ∋ (𝑧, 𝑤) ↦→ ⟨𝑃𝑘 (·, 𝑤), 𝑘 (·, 𝑧)⟩H𝑘
,

is also a tridiagonal kernel. While this problem is of independent interest, the motivation for
our interest in this question also comes from Theorem 7.7 (also see the paragraph preceding
Corollary 9.2). We start with a simple example.

Example 5.1. We consider the same example as in Example 4.1. Note that 𝑀𝑧 is left-
invertible and not a weighted shift with respect to the orthonormal basis { 𝑓𝑛}𝑛≥0 of H𝑘 .
Then by Lemma 2.6, we have

|𝑀𝑧 |−2 = 𝐿𝑀𝑧
𝐿∗𝑀𝑧

=



1 − 1
2 0 0 . . .

− 1
2

5
4 0 0

. . .

0 0 1 0
. . .

0 0 0 1
. . .

...
...

...
...

. . .


.

Let

|𝑀𝑧 |−1 =



𝛼 𝛽 0 0 . . .

𝛽 𝛾 0 0
. . .

0 0 1 0
. . .

0 0 0 1
. . .

...
...

...
...

. . .


,

where
[
𝛼 𝛽

𝛽 𝛾

]
is the positive square root of

[
1 − 1

2
− 1

2
5
4

]
. A straightforward calculation

shows that 𝛼
2 + 𝛽 ≠ 0. Define 𝐾 : D × D→ C by

𝐾 (𝑧, 𝑤) = ⟨|𝑀𝑧 |−1𝑘 (·, 𝑤), 𝑘 (·, 𝑧)⟩H𝑘
(𝑧, 𝑤 ∈ D).

A simple computation then shows that

𝐾 (𝑧, 𝑤) = 𝛼 + (𝛼
2
+ 𝛽)�̄� + (𝛼

2
+ 𝛽)𝑧 + (𝛼

4
+ 𝛽 + 𝛾)𝑧�̄� +

∑︁
𝑛≥2

𝑧𝑛�̄�𝑛,

that is, 𝐾 is also a tridiagonal kernel.

The following is a complete classification of positive operators 𝑃 for which (𝑧, 𝑤) ↦→
⟨𝑃𝑘 (·, 𝑤), 𝑘 (·, 𝑧)⟩H𝑘

defines a tridiagonal kernel.
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Theorem 5.2. Let H𝑘 be a tridiagonal space corresponding to the orthonormal basis
𝑓𝑛 (𝑧) = (𝑎𝑛 + 𝑏𝑛𝑧)𝑧𝑛, 𝑛 ≥ 0. Let 𝑃 be a positive operator onH𝑘 with matrix representation

𝑃 =



𝑐00 𝑐01 𝑐02 𝑐03 . . .

𝑐01 𝑐11 𝑐12 𝑐13
. . .

𝑐02 𝑐12 𝑐22 𝑐23
. . .

𝑐03 𝑐13 𝑐23 𝑐33
. . .

...
...

...
. . .

. . .


,

with respect to the basis { 𝑓𝑛}𝑛≥0. Then the positive definite scalar kernel 𝐾 , defined by

𝐾 (𝑧, 𝑤) = ⟨𝑃𝑘 (·, 𝑤), 𝑘 (·, 𝑧)⟩H𝑘
(𝑧, 𝑤 ∈ D),

is tridiagonal if and only if

𝑐0𝑛 = (−1)𝑛−1 �̄�1 · · · �̄�𝑛−1

�̄�2 · · · �̄�𝑛
𝑐01 (𝑛 ≥ 2),

and
𝑐𝑚𝑛 = (−1)𝑛−𝑚−1 �̄�𝑚+1 · · · �̄�𝑛−1

�̄�𝑚+2 · · · �̄�𝑛
𝑐𝑚,𝑚+1 (1 ≤ 𝑚 ≤ 𝑛 − 2).

Equivalently, 𝐾 is tridiagonal if and only if

𝑃 =



𝑐00 𝑐01 − 𝑏1
𝑎2
𝑐01

�̄�1 �̄�2
�̄�2 �̄�3

𝑐01 . . .

𝑐01 𝑐11 𝑐12 − �̄�2
�̄�3
𝑐12

. . .

− 𝑏1
𝑎2
𝑐01 𝑐12 𝑐22 𝑐23

. . .

𝑏1𝑏2
𝑎2𝑎3

𝑐01 − 𝑏2
𝑎3
𝑐12 𝑐23 𝑐33

. . .

...
...

...
. . .

. . .


.

Proof. Note, for each 𝑤 ∈ D, by (1.3), we have 𝑘 (·, 𝑤) = ∑∞
𝑚=0 𝑓𝑚 (𝑤) 𝑓𝑚, and thus

𝑃𝑘 (·, 𝑤) =
∞∑︁

𝑚=0
(
𝑚−1∑︁
𝑛=0

𝑐𝑛𝑚 𝑓𝑛 (𝑤) +
∞∑︁

𝑛=𝑚

𝑐𝑚𝑛 𝑓𝑛 (𝑤)) 𝑓𝑚,

where
∑−1

𝑛=0 𝑥𝑛 := 0. Then

⟨𝑃𝑘 (·, 𝑤), 𝑘 (·, 𝑧)⟩H𝑘
=

∞∑︁
𝑚=0

𝑓𝑚 (𝑧) (
𝑚−1∑︁
𝑛=0

𝑐𝑛𝑚 𝑓𝑛 (𝑤) +
∞∑︁

𝑛=𝑚

𝑐𝑚𝑛 𝑓𝑛 (𝑤))

=

∞∑︁
𝑚=0

(𝑎𝑚𝑧𝑚 + 𝑏𝑚𝑧𝑚+1) (
𝑚−1∑︁
𝑛=0

𝑐𝑛𝑚 (�̄�𝑛�̄�𝑛 + �̄�𝑛�̄�𝑛+1)

+
∞∑︁

𝑛=𝑚

𝑐𝑚𝑛 (�̄�𝑛�̄�𝑛 + �̄�𝑛�̄�𝑛+1))

=
∑︁

𝑚,𝑛≥0
𝛼𝑚𝑛𝑧

𝑚�̄�𝑛,
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where 𝛼𝑚𝑛 denotes the coefficient of 𝑧𝑚�̄�𝑛, 𝑚, 𝑛 ≥ 0. Our interest here is to compute 𝛼𝑚𝑛,
|𝑚 − 𝑛| ≥ 2. Clearly, 𝛼𝑚𝑛 = �̄�𝑛𝑚 for all 𝑚, 𝑛 ≥ 0, and

(5.1) 𝛼0𝑛 = 𝑎0 (�̄�𝑛𝑐0𝑛 + �̄�𝑛−1𝑐0,𝑛−1) (𝑛 ≥ 2),

and
(5.2)
𝛼𝑚𝑛 = 𝑎𝑚

(
�̄�𝑛𝑐𝑚𝑛 + �̄�𝑛−1𝑐𝑚,𝑛−1

)
+ 𝑏𝑚−1

(
�̄�𝑛𝑐𝑚−1,𝑛 + �̄�𝑛−1𝑐𝑚−1,𝑛−1

)
(1 ≤ 𝑚 < 𝑛).

Suppose 𝑛 ≥ 2. By (5.1), 𝛼0𝑛 = 0 if and only if 𝑐0𝑛 = − �̄�𝑛−1
�̄�𝑛
𝑐0,𝑛−1. In particular, if 𝑛 = 2,

then 𝑐02 = − �̄�1
�̄�2
𝑐01, and hence, by (5.1) again, we have

𝑐0𝑛 = (−1)𝑛−1
∏𝑛−1

𝑖=1 �̄�𝑖∏𝑛
𝑖=2 �̄�𝑖

𝑐01 (𝑛 ≥ 2).

Therefore, 𝛼0𝑛 = 0 for all 𝑛 ≥ 2 if and only if the above identity hold for all 𝑛 ≥ 2.
Next we want to consider the case 𝑚, 𝑛 ≠ 0 and |𝑚 − 𝑛| ≥ 2. Assume that 𝑛 ≥ 3. Then (5.2)
along with (5.1) implies

𝛼1𝑛 = 𝑎1 (�̄�𝑛𝑐1𝑛 + �̄�𝑛−1𝑐1,𝑛−1) + 𝑏0 (�̄�𝑛𝑐0𝑛 + �̄�𝑛−1𝑐0,𝑛−1)

= 𝑎1 (�̄�𝑛𝑐1𝑛 + �̄�𝑛−1𝑐1,𝑛−1) +
𝑏0

𝑎0
𝛼0𝑛.

Therefore, if 𝛼0𝑛 = 0 for all 𝑛 ≥ 3, then 𝛼1𝑛 = 𝑎1 (�̄�𝑛𝑐1𝑛 + �̄�𝑛−1𝑐1,𝑛−1). Hence 𝛼1𝑛 = 0 if
and only if �̄�𝑛𝑐1𝑛 + �̄�𝑛−1𝑐1,𝑛−1 = 0, which is equivalent to

𝑐1𝑛 = − �̄�𝑛−1

�̄�𝑛
𝑐1,𝑛−1.

Therefore, under the assumption that 𝛼1𝑛 = 0 and 𝑛 ≥ 4, (5.2) along with (5.1) implies

𝛼2𝑛 = 𝑎2 (�̄�𝑛𝑐2𝑛 + �̄�𝑛−1𝑐2,𝑛−1) + 𝑏1 (�̄�𝑛𝑐1𝑛 + �̄�𝑛−1𝑐1,𝑛−1)
= 𝑎2 (�̄�𝑛𝑐2𝑛 + �̄�𝑛−1𝑐2,𝑛−1).

Then 𝛼2𝑛 = 0, 𝑛 ≥ 4, if and only if 𝑐2𝑛 = − �̄�𝑛−1
�̄�𝑛
𝑐2,𝑛−1. Consequently, by induction, for all

𝑚, 𝑛 ≠ 0 and |𝑚 − 𝑛| ≥ 2, we have that 𝛼𝑚𝑛 = 0 if and only if �̄�𝑛𝑐𝑚𝑛 + �̄�𝑛−1𝑐𝑚,𝑛−1 = 0, or
equivalently

𝑐𝑚𝑛 = − �̄�𝑛−1

�̄�𝑛
𝑐𝑚,𝑛−1.

Finally, observe that 𝑐𝑚𝑛 = (−1)𝑛−𝑚−1 �̄�𝑛−1 · · ·�̄�𝑚+1
�̄�𝑛 · · ·�̄�𝑚+2

𝑐𝑚,𝑚+1 for all 1 ≤ 𝑚 ≤ 𝑛 − 2. This com-
pletes the proof of the theorem.

We will return to this in Theorem 8.3 and Corollary 8.4.
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6. Quasinormal operators

A bounded linear operator 𝑇 ∈ B(H) is said to be quasinormal if 𝑇∗𝑇 and 𝑇 commutes,
that is

[𝑇∗, 𝑇]𝑇 = 0,

where [𝑇∗, 𝑇] = 𝑇∗𝑇 − 𝑇𝑇∗ is the commutator of 𝑇 . In this section, we present a complete
classification of quasinormality of 𝑀𝑧 on analytic tridiagonal spaces. Here, however, we
do not need to assume that 𝑀𝑧 is left-invertible.

To motivate our result on quasinormality, we first consider the known case of weighted
shifts. Recall that the weighted shift 𝑆𝛼 corresponding to the weight sequence (of positive
real numbers) {𝛼𝑛}𝑛≥0 is given by 𝑆𝛼𝑒𝑛 = 𝛼𝑛𝑒𝑛+1 for all 𝑛 ≥ 0. Then (see the proof of
Proposition 2.7)

𝑆𝛼𝑆
∗
𝛼𝑒𝑛+1 = 𝛼2

𝑛𝑒𝑛+1,

and hence (𝑆∗𝛼𝑆𝛼 − 𝑆𝛼𝑆∗𝛼)𝑆𝛼 = 0 if and only if (𝑆∗𝛼𝑆𝛼 − 𝑆𝛼𝑆∗𝛼)𝑆𝛼𝑒𝑛 = 0 for all 𝑛 ≥ 0,
which is equivalent to

𝛼𝑛 (𝛼2
𝑛+1 − 𝛼

2
𝑛) = 0,

for all 𝑛. Thus, we have proved [8, Problem 139]:

Lemma 6.1 ([8]). The weighted shift 𝑆𝛼 is quasinormal if and only if the weight sequence
{𝛼𝑛}𝑛≥0 is a constant sequence.

Now we turn to𝑀𝑧 on a semi-analytic tridiagonal spaceH𝑘 . Suppose [𝑀∗
𝑧 , 𝑀𝑧] = 𝑟𝑃 𝑓0 ,

where 𝑟 is a non-negative real number and 𝑃 𝑓0 denote the orthogonal projection ofH𝑘 onto
the one dimensional space C 𝑓0. Then [𝑀∗

𝑧 , 𝑀𝑧]𝑀𝑧 = 𝑟𝑃 𝑓0𝑀𝑧 implies that

( [𝑀∗
𝑧 , 𝑀𝑧]𝑀𝑧) 𝑓𝑛 = 𝑟𝑃 𝑓0 (𝑧 𝑓𝑛).

Now by (2.7) we have

𝑧 𝑓𝑛 =

∞∑︁
𝑖=𝑛+1

𝛽𝑖 𝑓𝑖 ,

for some scalars 𝛽𝑖 ∈ C, 𝑖 ≥ 𝑛 + 1. Note that 𝛽𝑛+1 =
𝑎𝑛
𝑎𝑛+1

≠ 0. This shows that 𝑃 𝑓0 (𝑧 𝑓𝑛) = 0,
and hence

( [𝑀∗
𝑧 , 𝑀𝑧]𝑀𝑧) 𝑓𝑛 = 0 (𝑛 ≥ 0),

that is, 𝑀𝑧 is quasinormal. Conversely, assume that 𝑀𝑧 is a non-normal and quasinormal
operator. Then [𝑀∗

𝑧 , 𝑀𝑧]𝑀𝑧 = 0 implies that ran𝑀𝑧 ⊆ ker[𝑀∗
𝑧 , 𝑀𝑧], and therefore, by

Lemma 2.4, we have
C 𝑓0 = ker𝑀∗

𝑧 ⊇ 𝑟𝑎𝑛[𝑀∗
𝑧 , 𝑀𝑧] .

Clearly this implies [𝑀∗
𝑧 , 𝑀𝑧] = 𝑟𝑃 𝑓0 for some non-zero scalar 𝑟. Then

𝑟 ∥ 𝑓0∥2 = ⟨𝑟𝑃 𝑓0 𝑓0, 𝑓0⟩H𝑘
= ⟨[𝑀∗

𝑧 , 𝑀𝑧] 𝑓0, 𝑓0⟩H𝑘
= ∥𝑀𝑧 𝑓0∥2 − ∥𝑀∗

𝑧 𝑓0∥2 = ∥𝑀𝑧 𝑓0∥2,

as 𝑀∗
𝑧 𝑓0 = 0, which implies

𝑟 =
∥𝑀𝑧 𝑓0∥2

∥ 𝑓0∥2 > 0.

Thus, we have proved:
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Theorem 6.2. Let H𝑘 be a semi-analytic tridiagonal space. Assume that 𝑀𝑧 is a non-
normal operator on H𝑘 . Then 𝑀𝑧 is quasinormal if and only if there exists a positive real
number 𝑟 such that

𝑀∗
𝑧𝑀𝑧 − 𝑀𝑧𝑀

∗
𝑧 = 𝑟𝑃 𝑓0 ,

where 𝑃 𝑓0 denote the orthogonal projection of H𝑘 onto the one dimensional space C 𝑓0.

In more algebraic terms this result can be formulated as follows: First we recall the
matrix representation of 𝑀𝑧 (see (2.8))

[𝑀𝑧] =



0 0 0 0 . . .

𝑎0
𝑎1

0 0 0
. . .

𝑐0
𝑎1
𝑎2

0 0
. . .

−𝑐0𝑏2
𝑎3

𝑐1
𝑎2
𝑎3

0
. . .

𝑐0𝑏2𝑏3
𝑎3𝑎4

−𝑐1𝑏3
𝑎4

𝑐2
𝑎3
𝑎4

. . .

−𝑐0𝑏2𝑏3𝑏4
𝑎3𝑎4𝑎5

𝑐1𝑏3𝑏4
𝑎4𝑎5

−𝑐2𝑏4
𝑎5

𝑐3
. . .

...
. . .

. . .
. . .

. . .



.

For each 𝑛 ≥ 0, we denote by 𝑅𝑛 and 𝐶𝑛 the 𝑛-th row and 𝑛-th column, respectively, of
[𝑀𝑧]. We then identify each of these column and row vectors with elements in H𝑘 . Then
𝑅𝑛, 𝐶𝑛 ∈ H𝑘 , 𝑛 ≥ 0. Using the matrix representation [𝑀∗

𝑧 ] (see (2.9)) and [𝑀𝑧], we get

⟨𝑅0, 𝑅𝑛⟩H𝑘
= 0,

for all 𝑛 ≥ 0, and, consequently

[
[𝑀∗

𝑧 , 𝑀𝑧]
]
=


⟨𝐶0, 𝐶0⟩H𝑘

⟨𝐶1, 𝐶0⟩H𝑘
⟨𝐶2, 𝐶0⟩H𝑘

· · ·
⟨𝐶0, 𝐶1⟩H𝑘

⟨𝐶1, 𝐶1⟩H𝑘
− ⟨𝑅1, 𝑅1⟩H𝑘

⟨𝐶2, 𝐶1⟩H𝑘
− ⟨𝑅1, 𝑅2⟩H𝑘

· · ·
⟨𝐶0, 𝐶2⟩H𝑘

⟨𝐶1, 𝐶2⟩H𝑘
− ⟨𝑅2, 𝑅1⟩H𝑘

⟨𝐶2, 𝐶2⟩H𝑘
− ⟨𝑅2, 𝑅2⟩H𝑘

· · ·
...

...
...

. . .


.

Therefore:

Corollary 6.3. Let H𝑘 be a semi-analytic tridiagonal space. Then 𝑀𝑧 on H𝑘 is quas-
inormal if and only if ⟨𝐶0, 𝐶0⟩H𝑘

= 𝑟 and

⟨𝐶0, 𝐶𝑖⟩H𝑘
= 0 (𝑖 ≥ 1),

and
⟨𝐶𝑛, 𝐶𝑚⟩H𝑘

− ⟨𝑅𝑚, 𝑅𝑛⟩H𝑘
= 0,

for all 1 ≤ 𝑚 ≤ 𝑛.

It is easy to see that a quasinormal operator is always subnormal [8]. However, a com-
plete classification of subnormality of 𝑀𝑧 on tridiagonal spaces is rather more subtle and
not quite as clear-cut as in the quasinormal situation. In fact the general classification of
subnormality of 𝑀𝑧 on tridiagonal spaces is not known (however, see [1]).
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7. Aluthge transforms of shifts

Recall that the Aluthge transform of an operator 𝑇 ∈ B(H) is the bounded linear operator

𝑇 = |𝑇 | 1
2𝑈 |𝑇 | 1

2 .

In this section, we prove that the Aluthge transform of a left-invertible shift on an analytic
Hilbert space is again an explicit shift on some analytic Hilbert space. We present two
approaches to this problem, one based on Shimorin’s analytic models of left-invertible
operators and one is based on rather direct reproducing kernel Hilbert space techniques.

We begin with the following simple fact concerning Aluthge transforms of left-invertible
operators:

Lemma 7.1. If 𝑇 is a left-invertible operator on H , then

𝑇 = |𝑇 | 1
2𝑇 |𝑇 |− 1

2 ,

and ker𝑇∗ = |𝑇 |− 1
2 ker𝑇∗. In particular, 𝑇 is similar to 𝑇 .

Proof. Indeed, 𝑇 = |𝑇 | 1
2𝑈 |𝑇 | 1

2 = |𝑇 | 1
2 (𝑈 |𝑇 |) |𝑇 |− 1

2 = |𝑇 | 1
2𝑇 |𝑇 |− 1

2 , as 𝑇∗𝑇 is invertible. The
second equality follows from the first.

Suppose in addition that𝑇 is a shift on an analytic Hilbert space. In Theorem 7.3 (under
an additional assumption that𝑇 is analytic), and then in Theorem 7.7 again, we prove that𝑇 ,
up to unitary equivalence, is also a shift on an explicit analytic Hilbert space. In connection
with Lemma 2.6, we now prove the following:

Proposition 7.2. If 𝑇 is a left-invertible operator on H , then the Shimorin left inverse 𝐿�̃�
of the Aluthge transform 𝑇 is given by

𝐿�̃� = |𝑇 | 1
2

(
(𝐿𝑇 |𝑇 |𝑇)−1𝐿𝑇

)
|𝑇 | 1

2 = |𝑇 | 1
2

(
(𝑇∗ |𝑇 |𝑇)−1𝑇∗

)
|𝑇 | 1

2 .

Proof. By Lemma 7.1, we know that 𝑇 = |𝑇 |1/2𝑇 |𝑇 |−1/2. Since |𝑇 |1/2 is invertible and
𝐿𝑇𝑇 = 𝐼, we have

|𝑇 |1/2𝐿𝑇 |𝑇 |−1/2𝑇 = 𝐼,

which implies that 𝑇 is left-invertible, and hence (𝑇∗𝑇)−1 exists. By Lemma 7.1 again, we
have

𝑇∗𝑇 = ( |𝑇 |−1/2𝑇∗ |𝑇 |1/2) ( |𝑇 |1/2𝑇 |𝑇 |−1/2)
= |𝑇 |−1/2 (𝑇∗ |𝑇 |𝑇) |𝑇 |−1/2.

Since (𝑇∗𝑇) and |𝑇 |−1/2 both are invertible, we conclude that𝑇∗ |𝑇 |𝑇 is invertible. Moreover,
the above equality implies

(𝑇∗𝑇)−1 = |𝑇 | 1
2 (𝑇∗ |𝑇 |𝑇)−1 |𝑇 | 1

2 .
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Then

𝐿�̃� = (𝑇∗𝑇)−1𝑇∗ = ( |𝑇 | 1
2 (𝑇∗ |𝑇 |𝑇)−1 |𝑇 | 1

2 ) |𝑇 |− 1
2𝑇∗ |𝑇 | 1

2

= |𝑇 | 1
2

(
(𝑇∗ |𝑇 |𝑇)−1𝑇∗

)
|𝑇 | 1

2 .

On the other hand, since 𝑇∗ = |𝑇 |2𝐿𝑇 , we have 𝑇∗ |𝑇 |𝑇 = |𝑇 |2𝐿𝑇 |𝑇 |𝑇 , and hence

(𝑇∗ |𝑇 |𝑇)−1 = (𝐿𝑇 |𝑇 |𝑇)−1 |𝑇 |−2.

Therefore, (𝑇∗𝑇)−1 = |𝑇 | 1
2 (𝐿𝑇 |𝑇 |𝑇)−1 |𝑇 |− 3

2 , which gives

𝐿�̃� = (𝑇∗𝑇)−1𝑇∗ = |𝑇 | 1
2 (𝐿𝑇 |𝑇 |𝑇)−1 |𝑇 |−2 (𝑇∗ |𝑇 | 1

2 ) = |𝑇 | 1
2 (𝐿𝑇 |𝑇 |𝑇)−1𝐿𝑇 |𝑇 |

1
2 ,

and completes the proof.

Then the above, along with Theorem 2.5 and Lemma 7.1 implies the following:

Theorem 7.3. Let E be a Hilbert space, and let 𝑘 : D ×D→ B(E) be an analytic kernel.
Suppose 𝑀𝑧 is left-invertible on H𝑘 . Then the Aluthge transform �̃�𝑧 is unitarily equivalent
to the shift 𝑀𝑧 on H�̃� ⊆ O(D,W̃), where

�̃� (𝑧, 𝑤) = 𝑃W̃ (𝐼 − 𝑧𝐿)−1 (𝐼 − �̄�𝐿∗)−1 |W̃ (𝑧, 𝑤 ∈ D),

and W̃ = ker �̃�∗
𝑧 = |𝑀𝑧 |−

1
2 ker𝑀∗

𝑧 , and

𝐿 = |𝑀𝑧 |
1
2 ((𝐿𝑀𝑧

|𝑀𝑧 |𝑀𝑧)−1𝐿𝑀𝑧
) |𝑀𝑧 |

1
2 .

Definition 7.4. The kernel �̃� is called the Shimorin-Aluthge kernel of 𝑀𝑧 .

Under some additional assumptions on scalar-valued analytic kernels, we now prove
that, up to similarity and a perturbation of an operator of rank at most one, 𝐿�̃�𝑧

and 𝐿𝑀𝑧
are

the same. As far as concrete examples are concerned, these assumptions are indispensable
and natural (cf. Lemma 2.4).

Theorem 7.5. Let 𝑘 : D ×D→ C be an analytic kernel, C[𝑧] ⊆ H𝑘 , and let { 𝑓𝑛} ⊆ C[𝑧]
be an orthonormal basis of H𝑘 . Assume that 𝑀𝑧 on H𝑘 is left-invertible, ker 𝑀∗

𝑧 = C 𝑓0,
and

𝑓𝑛 ∈ span{𝑧𝑚 : 𝑚 ≥ 1} (𝑛 ≥ 1).

Then 𝐿�̃�𝑧
and 𝐿𝑀𝑧

are similar up to the perturbation of an operator of rank at most one.

Proof. Since ker𝑀∗
𝑧 =C 𝑓0, 𝐿𝑀𝑧

𝑓0 = 0 and 𝐿𝑀𝑧
𝑧𝑛 = 𝐿𝑀𝑧

𝑀𝑧 (𝑧𝑛−1) = 𝑧𝑛−1, by the definition
of 𝐿𝑀𝑧

. This implies 𝐿𝑀𝑧
𝑧𝑛 = 𝑧𝑛−1, 𝑛 ≥ 1 (also see (3.3)). In particular, 𝐿𝑀𝑧

𝑓𝑛 ∈ C[𝑧] for
all 𝑛 ≥ 0. Moreover, for each 𝑛 ≥ 1, we have

𝐿�̃�𝑧
( |𝑀𝑧 |

1
2 𝑧𝑛) = |𝑀𝑧 |

1
2 ((𝐿𝑀𝑧

|𝑀𝑧 |𝑀𝑧)−1𝐿𝑀𝑧
) |𝑀𝑧 |𝑧𝑛

= |𝑀𝑧 |
1
2 (𝐿𝑀𝑧

|𝑀𝑧 |𝑀𝑧)−1 (𝐿𝑀𝑧
|𝑀𝑧 |𝑀𝑧)𝑧𝑛−1,
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that is, 𝐿�̃�𝑧
( |𝑀𝑧 |

1
2 𝑧𝑛) = |𝑀𝑧 |

1
2 𝑧𝑛−1. Therefore, we have

( |𝑀𝑧 |−
1
2 𝐿�̃�𝑧

|𝑀𝑧 |
1
2 )𝑧𝑛 = 𝐿𝑀𝑧

𝑧𝑛 = 𝑧𝑛−1 (𝑛 ≥ 1).

Then ( |𝑀𝑧 |−
1
2 𝐿�̃�𝑧

|𝑀𝑧 |
1
2 − 𝐿𝑀𝑧

) 𝑓𝑛 = 0 for all 𝑛 ≥ 1, which gives

( |𝑀𝑧 |−
1
2 𝐿�̃�𝑧

|𝑀𝑧 |
1
2 − 𝐿𝑀𝑧

) |𝑠𝑝𝑎𝑛{ 𝑓𝑛:𝑛≥1} = 0.

Finally, we have clearly

( |𝑀𝑧 |−
1
2 𝐿�̃�𝑧

|𝑀𝑧 |
1
2 − 𝐿𝑀𝑧

) 𝑓0 = ( |𝑀𝑧 |−
1
2 𝐿�̃�𝑧

|𝑀𝑧 |
1
2 ) 𝑓0,

and hence

(7.1) 𝐹 := |𝑀𝑧 |−
1
2 𝐿�̃�𝑧

|𝑀𝑧 |
1
2 − 𝐿𝑀𝑧

,

is of rank at most one, and consequently 𝐿�̃�𝑧
|𝑀𝑧 |

1
2 = |𝑀𝑧 |

1
2 (𝐿𝑀𝑧

+ 𝐹). This completes
the proof of the theorem.

The following analysis of 𝐹, defined as in (7.1), will be useful in what follows. Note
that

(7.2) 𝐿�̃�𝑧
|𝑀𝑧 |

1
2 = |𝑀𝑧 |

1
2 (𝐿𝑀𝑧

+ 𝐹).

Let 𝑔 ∈ H𝑘 . Clearly, since 𝐿𝑀𝑧
𝑓0 = 0, we have

𝐹𝑔 = ⟨𝑔, 𝑓0⟩H𝑘
( |𝑀𝑧 |−

1
2 𝐿�̃�𝑧

|𝑀𝑧 |
1
2 𝑓0).

Then Lemma 2.6 implies that

(7.3) 𝐹𝑔 = ⟨𝑔, 𝑓0⟩H𝑘
((𝑀∗

𝑧 |𝑀𝑧 |𝑀𝑧)−1𝑀∗
𝑧 |𝑀𝑧 | 𝑓0) (𝑔 ∈ H𝑘).

As we will see in Section 8, the appearance of the finite rank operator 𝐹 causes severe com-
putational difficulties for Shimorin-Aluthge kernels of shifts. On the other hand, combining
Theorem 2.5, Proposition 7.2 and (7.2), we have:

Theorem 7.6. In the setting of Theorem 7.5, the Aluthge transform �̃�𝑧 of 𝑀𝑧 on H𝑘 is
unitarily equivalent to the shift 𝑀𝑧 on H�̃� , where

�̃� (𝑧, 𝑤) = 𝑃W (𝐼 − 𝑧𝐿)−1 (𝐼 − �̄�𝐿∗)−1 |W ,

W = |𝑀𝑧 |−
1
2 ker𝑀∗

𝑧 = C( |𝑀𝑧 |−
1
2 𝑓0), and

𝐿 = |𝑀𝑧 |
1
2 (𝐿𝑀𝑧

+ 𝐹) |𝑀𝑧 |−
1
2 ,

and
𝐹𝑔 = ⟨𝑔, 𝑓0⟩H𝑘

((𝑀∗
𝑧 |𝑀𝑧 |𝑀𝑧)−1𝑀∗

𝑧 |𝑀𝑧 | 𝑓0) (𝑔 ∈ H𝑘).
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We now revisit Theorem 7.3 from a direct reproducing kernel Hilbert space stand-
point. Indeed, there is a rather more concrete proof of Theorem 7.3 which avoids using
the analytic model of left-invertible operators. In this case, also, the reproducing kernel of
the corresponding Aluthge transform is explicit. Part of the proof follows the same line of
argumentation as the proof of reproducing kernel property of range spaces (cf. [3]). To the
reader’s benefit, we include all necessary details.

Theorem 7.7. Let E be a Hilbert space, and let 𝑘 : D ×D→ B(E) be an analytic kernel.
Assume that the shift 𝑀𝑧 is left-invertible on H𝑘 . Then

⟨�̃� (𝑧, 𝑤)𝜂, 𝜁⟩E = ⟨|𝑀𝑧 |−1 (𝑘 (·, 𝑤)𝜂), 𝑘 (·, 𝑧)𝜁)⟩H𝑘
(𝑧, 𝑤 ∈ D, 𝜂, 𝜁 ∈ E),

defines a kernel �̃� :D×D→B(E). Moreover, the shift 𝑀𝑧 onH�̃� defines a bounded linear
operator, and there exists a unitary𝑈 : H𝑘 → H�̃� such that𝑈�̃�𝑧 = 𝑀𝑧𝑈.

Proof. Define H̃ = |𝑀𝑧 |−
1
2 H𝑘 . Then H̃ (= H𝑘) is an E-valued function Hilbert space

endowed with the inner product ⟨|𝑀𝑧 |−
1
2 𝑓 , |𝑀𝑧 |−

1
2 𝑔⟩H̃ = ⟨ 𝑓 , 𝑔⟩H𝑘

for all 𝑓 , 𝑔 ∈ H𝑘 . For
each 𝑓 ∈ H𝑘 , 𝑤 ∈ D and 𝜂 ∈ E, we have

⟨|𝑀𝑧 |−
1
2 𝑓 , |𝑀𝑧 |−1 (𝑘 (·, 𝑤)𝜂)⟩H̃ = ⟨ 𝑓 , |𝑀𝑧 |−

1
2 (𝑘 (·, 𝑤)𝜂)⟩H𝑘

= ⟨|𝑀𝑧 |−
1
2 𝑓 , 𝑘 (·, 𝑤)𝜂⟩H𝑘

,

and hence, by the reproducing property of H𝑘 , it follows that

(7.4) ⟨|𝑀𝑧 |−
1
2 𝑓 , |𝑀𝑧 |−1 (𝑘 (·, 𝑤)𝜂)⟩H̃ = ⟨(|𝑀𝑧 |−

1
2 𝑓 ) (𝑤), 𝜂⟩E .

This says that {|𝑀𝑧 |−1 (𝑘 (·, 𝑤)𝜂) : 𝑤 ∈ D, 𝜂 ∈ E} reproduces the values of functions in H̃ ,
and furthermore, the evaluation operator 𝑒𝑣𝑤 : H̃ → E is continuous. Indeed

|⟨𝑒𝑣𝑤( |𝑀𝑧 |−
1
2 𝑓 ), 𝜂⟩E | = |⟨( |𝑀𝑧 |−

1
2 𝑓 ) (𝑤), 𝜂⟩E |

= |⟨|𝑀𝑧 |−
1
2 𝑓 , |𝑀𝑧 |−1 (𝑘 (·, 𝑤)𝜂)⟩H̃ |

≤ ∥|𝑀𝑧 |−
1
2 𝑓 ∥H̃ ∥|𝑀𝑧 |−1 (𝑘 (·, 𝑤)𝜂)∥H̃

= ∥|𝑀𝑧 |−
1
2 𝑓 ∥H̃ ∥|𝑀𝑧 |−

1
2 (𝑘 (·, 𝑤)𝜂)∥H𝑘

.

Since ∥𝑘 (·, 𝑤)𝜂∥2
H𝑘

= ⟨𝑘 (·, 𝑤)𝜂, 𝑘 (·, 𝑤)𝜂⟩H𝑘
= ⟨𝑘 (𝑤, 𝑤)𝜂, 𝜂⟩E = ∥𝑘 (𝑤, 𝑤) 1

2 𝜂∥2
E , it follows

that

∥|𝑀𝑧 |−
1
2 (𝑘 (·, 𝑤)𝜂)∥H𝑘

≤ ∥|𝑀𝑧 |−
1
2 ∥B(H𝑘 ) ∥𝑘 (·, 𝑤)𝜂∥H𝑘

= ∥|𝑀𝑧 |−
1
2 ∥B(H𝑘 ) ∥𝑘 (𝑤, 𝑤)

1
2 𝜂∥E

≤ ∥|𝑀𝑧 |−
1
2 ∥B(H𝑘 ) ∥𝑘 (𝑤, 𝑤)

1
2 ∥B(E) ∥𝜂∥E ,

which implies that

|⟨𝑒𝑣𝑤( |𝑀𝑧 |−
1
2 𝑓 ), 𝜂⟩E | ≤ (∥ |𝑀𝑧 |−

1
2 ∥B(H𝑘 ) ∥𝑘 (𝑤, 𝑤)

1
2 ∥B(E) )∥ |𝑀𝑧 |−

1
2 𝑓 ∥H̃ ∥𝜂∥E .

Therefore H̃ is an E-valued reproducing kernel Hilbert space corresponding to the kernel
function

�̃� (𝑧, 𝑤) = 𝑒𝑣𝑧 ◦ 𝑒𝑣∗𝑤 (𝑧, 𝑤 ∈ D).
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Clearly, (7.4) implies that 𝑒𝑣∗𝑤𝜂 = |𝑀𝑧 |−1 (𝑘 (·, 𝑤)𝜂) for all𝑤 ∈D and 𝜂 ∈ E. Since ⟨�̃� (𝑧,𝑤)𝜂, 𝜁⟩E =
⟨𝑒𝑣∗𝑤𝜂, 𝑒𝑣∗𝑧𝜁⟩E , it follows that

⟨�̃� (𝑧, 𝑤)𝜂, 𝜁⟩E = ⟨|𝑀𝑧 |−1 (𝑘 (·, 𝑤)𝜂), |𝑀𝑧 |−1 (𝑘 (·, 𝑧)𝜁)⟩H̃
= ⟨|𝑀𝑧 |−

1
2 (𝑘 (·, 𝑤)𝜂), |𝑀𝑧 |−

1
2 (𝑘 (·, 𝑧)𝜁)⟩H𝑘

,

that is, ⟨�̃� (𝑧, 𝑤)𝜂, 𝜁⟩E = ⟨|𝑀𝑧 |−1 (𝑘 (·, 𝑤)𝜂), 𝑘 (·, 𝑧)𝜁)⟩H𝑘
, 𝑧, 𝑤 ∈ D, 𝜂, 𝜁 ∈ E. Therefore, as a

reproducing kernel Hilbert space corresponding to the kernel �̃� , we have H�̃� = H̃ . Define
the unitary map𝑈 : H𝑘 → H�̃� by

𝑈ℎ = |𝑀𝑧 |−
1
2 ℎ (ℎ ∈ H𝑘),

and recall from Lemma 7.1 that �̃�∗
𝑧 = |𝑀𝑧 |−

1
2 𝑀∗

𝑧 |𝑀𝑧 |
1
2 . Let 𝑓 ∈ H𝑘 , 𝑤 ∈ D, and let 𝜂 ∈ E.

Then

⟨(𝑈�̃�𝑧𝑈
∗ ( |𝑀𝑧 |−

1
2 𝑓 )) (𝑤), 𝜂⟩E = ⟨𝑈�̃�𝑧𝑈

∗ ( |𝑀𝑧 |−
1
2 𝑓 ), |𝑀𝑧 |−1 (𝑘 (·, 𝑤)𝜂)⟩H�̃�

= ⟨�̃�𝑧𝑈
∗ ( |𝑀𝑧 |−

1
2 𝑓 ), |𝑀𝑧 |−

1
2 (𝑘 (·, 𝑤)𝜂)⟩H𝑘

= ⟨ 𝑓 , �̃�∗
𝑧 |𝑀𝑧 |−

1
2 (𝑘 (·, 𝑤)𝜂)⟩H𝑘

= ⟨ 𝑓 , |𝑀𝑧 |−
1
2 𝑀∗

𝑧 (𝑘 (·, 𝑤)𝜂)⟩H𝑘
.

But since 𝑀∗
𝑧 (𝑘 (·, 𝑤)𝜂) = �̄�𝑘 (·, 𝑤)𝜂, we have

⟨(𝑈�̃�𝑧𝑈
∗ ( |𝑀𝑧 |−

1
2 𝑓 )) (𝑤), 𝜂⟩E = 𝑤⟨ 𝑓 , |𝑀𝑧 |−

1
2 (𝑘 (·, 𝑤)𝜂)⟩H𝑘

= ⟨𝑤( |𝑀𝑧 |−
1
2 𝑓

)
) (𝑤), 𝜂⟩E ,

which implies that

𝑈�̃�𝑧𝑈
∗ ( |𝑀𝑧 |−

1
2 𝑓 ) = 𝑧( |𝑀𝑧 |−

1
2 𝑓 ) ( 𝑓 ∈ H𝑘).

Thus the shift 𝑀𝑧 on H�̃� is a bounded linear operator and𝑈�̃�𝑧 = 𝑀𝑧𝑈.

Definition 7.8. The kernel �̃� is called the standard Aluthge kernel of 𝑀𝑧 .

In particular, if 𝑘 is a scalar-valued kernel, then �̃� (·, 𝑤) = 𝑈 ( |𝑀𝑧 |−
1
2 𝑘 (·, 𝑤)) and

�̃� (𝑧, 𝑤) = ⟨|𝑀𝑧 |−1𝑘 (·, 𝑤), 𝑘 (·, 𝑧)⟩H𝑘
(𝑧, 𝑤 ∈ D).

Therefore, if the shift on a tridiagonal spaceH𝑘 is left-invertible, then there are two ways to
compute the Aluthge kernel �̃�: use Theorem 7.3, or use the one above. However, it is curious
to note that, from a general computational point of view, neither approach is completely
satisfactory and definite. On the other hand, often the standard Aluthge kernel approach
(and sometimes both standard Aluthge kernel and Shimorin-Aluthge kernel methods) lead
to satisfactory results. We will discuss this in the following section.
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8. Truncated tridiagonal kernels

In this section, we introduce a (perhaps both deliberate and accidental) class of analytic
tridiagonal kernels from a computational point of view. Let H𝑘 be an analytic tridiagonal
space corresponding to the kernel

𝑘 (𝑧, 𝑤) =
∞∑︁
𝑛=0

𝑓𝑛 (𝑧) 𝑓𝑛 (𝑤) (𝑧, 𝑤 ∈ D),

where 𝑓𝑛 = (𝑎𝑛 + 𝑏𝑛𝑧)𝑧𝑛, 𝑛 ≥ 0. Suppose 𝑟 ≥ 2 is a natural number. We say that 𝑘 is a
truncated tridiagonal kernel of order 𝑟 (in short, truncated kernel of order 𝑟) if

𝑏𝑛 = 0 (𝑛 ≠ 2, 3, . . . , 𝑟).

We say that an analytic tridiagonal spaceH𝑘 is truncated space of order 𝑟 if 𝑘 is a truncated
kernel of order 𝑟 . Note that there are no restrictions imposed on the scalars 𝑏2, . . . , 𝑏𝑟 .

Let H𝑘 be a truncated space of order 𝑟 . Then �̃�𝑧 is unitarily equivalent to 𝑀𝑧 on H�̃� ,
where �̃� is either the Shimorin-Aluthge kernel or the standard Aluthge kernel of 𝑀𝑧 as
in Theorem 7.3 and Theorem 7.7, respectively. Here our aim is to compute the Shimorin-
Aluthge kernel of 𝑀𝑧 . More specifically, we classify all truncated kernels 𝑘 such that the
Shimorin-Aluthge kernel �̃� of 𝑀𝑧 is tridiagonal. We begin by computing |𝑀𝑧 |−1.

Lemma 8.1. If H𝑘 is a truncated space of order 𝑟 , then

[
|𝑀𝑧 |−1

]
=



| 𝑎1
𝑎0
| 0 0 · · · 0 0 0 · · ·

0 𝑐11 𝑐12 · · · 𝑐1,𝑟+1 0 0
. . .

0 𝑐12 𝑐22 · · · 𝑐2,𝑟+1 0 0
. . .

...
...

... · · ·
...

...
...

. . .

0 𝑐1,𝑟+1 𝑐2,𝑟+1 · · · 𝑐𝑟+1,𝑟+1 0 0
. . .

0 0 0 · · · 0 | 𝑎𝑟+3
𝑎𝑟+2

| 0
. . .

0 0 0 · · · 0 0 | 𝑎𝑟+4
𝑎𝑟+3

| . . .

...
...

... · · ·
...

...
. . .

. . .



,

with respect to the orthonormal basis { 𝑓𝑛}𝑛≥0.
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Proof. For each 𝑛 ≥ 1, by the definition of 𝑑𝑛 from (3.1), we have 𝑑𝑛 =
𝑏𝑛
𝑎𝑛

− 𝑏𝑛−1
𝑎𝑛−1

, and
hence 𝑑1 = 𝑑𝑟+𝑖 = 0, 𝑖 = 2, 3, . . .. Then Theorem 3.4 tells us that

[𝐿𝑀𝑧
] =



0 𝑎1
𝑎0

0 · · · 0 0 0 0 · · ·

0 0 𝑎2
𝑎1

· · · 0 0 0 0
. . .

0 0 𝑑2 · · · 0 0 0 0
. . .

...
...

...
...

...
...

...
...

. . .

0 0 (−1)𝑟−2 𝑑2𝑏2 · · ·𝑏𝑟−1
𝑎3 · · ·𝑎𝑟 · · · 𝑑𝑟

𝑎𝑟+1
𝑎𝑟

0 0
. . .

0 0 (−1)𝑟−1 𝑑2𝑏2 · · ·𝑏𝑟
𝑎3 · · ·𝑎𝑟𝑎𝑟+1

· · · − 𝑑𝑟𝑏𝑟
𝑎𝑟+1

𝑑𝑟+1
𝑎𝑟+2
𝑎𝑟+1

0
. . .

0 0 0 · · · 0 0 0 𝑎𝑟+3
𝑎𝑟+2

. . .

...
...

...
...

...
...

...
. . .

. . .



.

Now, by Lemma 2.6, |𝑀𝑧 |−2 = 𝐿𝑀𝑧
𝐿∗
𝑀𝑧

, which implies

[
|𝑀𝑧 |−2

]
=


| 𝑎1
𝑎0
|2 0 0

0 𝐴2
𝑟+1 0

0 0 𝐷2

 ,
where

𝐷2 = diag
(���𝑎𝑟+3

𝑎𝑟+2

���2, ���𝑎𝑟+4

𝑎𝑟+3

���2, . . . ) ,
and 𝐴2

𝑟+1 is a positive definite matrix of order 𝑟 + 1. Using this, one easily completes the
proof.

From the computational point of view, it is useful to observe that 𝐴2
𝑟+1 = 𝐿𝑟+1𝐿

∗
𝑟+1,

where

𝐿𝑟+1 =



𝑎2
𝑎1

0 0 0 0
𝑑2

𝑎3
𝑎2

0 0 0
...

...
...

...
...

(−1)𝑟−2 𝑑2𝑏2 · · ·𝑏𝑟−1
𝑎3 · · ·𝑎𝑟 (−1)𝑟−3 𝑑3𝑏3 · · ·𝑏𝑟−1

𝑎4 · · ·𝑎𝑟 · · · 𝑎𝑟+1
𝑎𝑟

0
(−1)𝑟−1 𝑑2𝑏2 · · ·𝑏𝑟

𝑎3 · · ·𝑎𝑟𝑎𝑟+1
(−1)𝑟−2 𝑑3𝑏3 · · ·𝑏𝑟

𝑎4 · · ·𝑎𝑟𝑎𝑟+1
· · · 𝑑𝑟+1

𝑎𝑟+2
𝑎𝑟+1


.

In other words, 𝐴2
𝑟+1 admits a lower-upper triangular factorization. This is closely related

to the Cholesky factorizations/decompositions of positive-definite matrices in the setting
of infinite dimensional Hilbert spaces (see [3] and [12]).

We recall from Theorem 7.6 that the Shimorin-Aluthge kernel of 𝑀𝑧 is given by

�̃� (𝑧, 𝑤) = 𝑃W̃ (𝐼 − 𝑧𝐿�̃�𝑧
)−1 (𝐼 − �̄�𝐿∗

�̃�𝑧
)−1 |W̃ (𝑧, 𝑤 ∈ D),

where W̃ = |𝑀𝑧 |−
1
2 ker𝑀∗

𝑧 , and

(8.1) 𝐿�̃�𝑧
= |𝑀𝑧 |

1
2 (𝐿𝑀𝑧

+ 𝐹) |𝑀𝑧 |−
1
2 ,
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and
𝐹𝑔 = ⟨𝑔, 𝑓0⟩H𝑘

(
(𝑀∗

𝑧 |𝑀𝑧 |𝑀𝑧)−1𝑀∗
𝑧 |𝑀𝑧 | 𝑓0

)
(𝑔 ∈ H𝑘).

We now come to the key point.

Lemma 8.2. If 𝑘 is a truncated kernel, then 𝐹 = 0 and 𝐿�̃�𝑧
|𝑀𝑧 |

1
2 = |𝑀𝑧 |

1
2 𝐿𝑀𝑧

.

Proof. The matrix representation of |𝑀𝑧 |−1 in Lemma 8.1 implies that |𝑀𝑧 | 𝑓0 = | 𝑎0
𝑎1
| 𝑓0,

and hence
𝑀∗

𝑧 |𝑀𝑧 | 𝑓0 =

���𝑎0

𝑎1

���𝑀∗
𝑧 𝑓0 = 0,

by Lemma 2.4. Therefore, the proof follows from the definition of 𝐹 and (8.1).

We are finally ready to state and prove the result we are aiming for.

Theorem 8.3. Let H𝑘 be a truncated space of order 𝑟 . Then the Shimorin-Aluthge kernel
is tridiagonal if and only if

𝑐𝑚𝑛 = (−1)𝑛−𝑚−1 �̄�𝑚+1 · · · �̄�𝑛−1

�̄�𝑚+2 · · · �̄�𝑛
𝑐𝑚,𝑚+1,

for all 1 ≤ 𝑚 ≤ 𝑛 − 2 and 3 ≤ 𝑛 ≤ 𝑟 + 1, where 𝑐𝑚𝑛 are the entries of the middle block
submatrix of order 𝑟 + 1 of

[
|𝑀𝑧 |−1

]
in Lemma 8.1.

Proof. We split the proof into several steps.
Step 1: First observe that �̃� (𝑧, 𝑤) = ∑∞

𝑚,𝑛=0 �̃�𝑚𝑛𝑧
𝑚�̄�𝑛, where �̃�𝑚𝑛 = 𝑃W̃𝐿𝑚

�̃�𝑧
𝐿∗𝑛
�̃�𝑧

|W̃ for
all 𝑚, 𝑛 ≥ 0. Now Lemma 8.2 implies that

𝐿𝑚
�̃�𝑧
𝐿∗𝑛
�̃�𝑧

= |𝑀𝑧 |
1
2 𝐿𝑚𝑀𝑧

|𝑀𝑧 |−1𝐿∗𝑛𝑀𝑧
|𝑀𝑧 |

1
2 ,

and𝑃W̃ = 𝐼 − �̃�𝑧𝐿�̃�𝑧
by (2.13). Since �̃�𝑧 = |𝑀𝑧 |

1
2 𝑀𝑧 |𝑀𝑧 |−

1
2 and 𝐿�̃�𝑧

= |𝑀𝑧 |
1
2 𝐿𝑀𝑧

|𝑀𝑧 |−
1
2 ,

we have

𝑃W̃ = |𝑀𝑧 |
1
2 (𝐼 − 𝑀𝑧𝐿𝑀𝑧

) |𝑀𝑧 |−
1
2

= |𝑀𝑧 |
1
2 𝑃W |𝑀𝑧 |−

1
2 ,

that is, 𝑃W̃ |𝑀𝑧 |
1
2 = |𝑀𝑧 |

1
2 𝑃W , which implies

(8.2) �̃�𝑚𝑛 = |𝑀𝑧 |
1
2 𝑃W𝐿𝑚𝑀𝑧

|𝑀𝑧 |−1𝐿∗𝑛𝑀𝑧
|W (𝑚, 𝑛 ≥ 0).

As a passing remark, we note that the above equality holds so long as the finite rank operator
𝐹 = 0 (this observation also will be used in Example 9.1).
Step 2: Now we compute the matrix representation of 𝐿 𝑝

𝑀𝑧
, 𝑝 ≥ 1. By Theorem 3.4, we

have
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[𝐿𝑀𝑧
] =



0 𝑎1
𝑎0

0 0 0 . . .

0 0 𝑎2
𝑎1

0 0
. . .

0 0 𝑑2
𝑎3
𝑎2

0
. . .

0 0 −𝑑2𝑏2
𝑎3

𝑑3
𝑎4
𝑎3

. . .

...
...

...
...

...
. . .


In particular, this yields

𝑃W𝐿𝑀𝑧
𝑓 𝑗 =

{
𝑎1
𝑎0
𝑓0 if 𝑗 = 1

0 otherwise.

Now we let 𝑝 ≥ 2. Recall from (4.6) the definition 𝛽 (𝑝)𝑛 = 𝑎𝑛

(
−𝑏0
𝑎0

) 𝑝−𝑛−1
𝛽𝑛 for all 𝑛 =

1, . . . , 𝑝 − 1, where 𝛽𝑛 =
𝑏𝑛
𝑎𝑛

− 𝑏0
𝑎0

. Since 𝑏0 = 0, we have 𝛽 (𝑝)𝑛 = 0, 1 ≤ 𝑛 < 𝑝 − 1, and

𝛽
(𝑝)
𝑝−1 = 𝑎𝑝−1𝛽𝑝−1 = 𝑎𝑝−1

( 𝑏𝑝−1

𝑎𝑝−1
− 𝑏0

𝑎0

)
,

that is, 𝛽 (𝑝)
𝑝−1 = 𝑏𝑝−1 for all 𝑝 ≥ 2. In particular, since 𝑏1 = 0, we have 𝛽 (2)1 = 𝑏1 = 0. Also

recall from (4.3) the definition 𝑑 (𝑝)𝑛 = 𝑏𝑛 − 𝑎𝑛
𝑎𝑛−𝑝

𝑏𝑛−𝑝 , 𝑛 ≥ 𝑝. Therefore, by (4.7), the matrix
representation of 𝐿2

𝑀𝑧
is given by

[𝐿2
𝑀𝑧

] =



0 0 𝑎2
𝑎0

0 0 · · ·

0 0 𝑑
(2)
2
𝑎1

𝑎3
𝑎1

0
. . .

0 0 0 𝑑
(2)
3
𝑎2

𝑎4
𝑎2

. . .

...
...

...
. . .

. . .


,

and in general, by (4.8), we have

(8.3) [𝐿 𝑝

𝑀𝑧
] =



0 · · · 0 𝑏𝑝−1
𝑎0

𝑎𝑝

𝑎0
0 0 · · ·

0 · · · 0 0 𝑑
(𝑝)
𝑝

𝑎1

𝑎𝑝+1
𝑎1

0
. . .

0 · · · 0 0 0
𝑑
(𝑝)
𝑝+1
𝑎2

𝑎𝑝+2
𝑎2

. . .

0 · · · 0 0 0 −
𝑑
(𝑝)
𝑝+1𝑏2

𝑎2𝑎3

𝑑
(𝑝)
𝑝+2
𝑎3

. . .

...
...

...
...

...
...

. . .
. . .


(𝑝 ≥ 2).
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Then

(8.4) [𝐿∗𝑝
𝑀𝑧

] =



0 0 0 0 · · ·
...

...
...

...
. . .

0 0 0 0
. . .

�̄�𝑝−1
�̄�0

0 0 0
. . .

�̄�𝑝

�̄�0

𝑑
(𝑝)
𝑝

�̄�1
0 0

. . .

0 �̄�𝑝+1
�̄�1

𝑑
(𝑝)
𝑝+1
�̄�2

−
𝑑
(𝑝)
𝑝+1 �̄�2

�̄�2 �̄�3

. . .

...
...

...
. . .

. . .



(𝑝 ≥ 2).

Step 3: We prove that �̃�0𝑛 = |𝑀𝑧 |
1
2 𝑃W |𝑀𝑧 |−1𝐿∗𝑛

𝑀𝑧
|W = 0 for all 𝑛 ≥ 1. In what follows, the

above matrix representations and the one of |𝑀𝑧 |−1 in Lemma 8.1 will be used repeatedly.
By (4.2), we have 𝐿∗

𝑀𝑧
𝑓0 =

�̄�1
�̄�0
𝑓1, and hence

�̃�01 𝑓0 = |𝑀𝑧 |
1
2 𝑃W |𝑀𝑧 |−1𝐿∗𝑀𝑧

𝑓0

= |𝑀𝑧 |
1
2 𝑃W ( 𝑎1

𝑎0
[𝑐11 𝑓1 + 𝑐12 𝑓2 + · · · ])

= 0.

On the other hand, if 𝑛 ≥ 2, then

𝐿∗𝑛𝑀𝑧
𝑓0 =

�̄�𝑛−1

�̄�0
𝑓𝑛−1 +

�̄�𝑛

�̄�0
𝑓𝑛,

and hence |𝑀𝑧 |−1 𝑓0 ⊥ 𝐿∗𝑛
𝑀𝑧
𝑓0. This implies that �̃�0𝑛 = 0 for all 𝑛 ≥ 2. Therefore, all entries

in the first row (and hence, also in the first column) of the formal matrix representation of
�̃� (𝑧, 𝑤) are zero except the (0, 0)-th entry (which is 𝐼W). Hence (see also (4.1))

[
�̃� (𝑧, 𝑤)

]
=



𝐼W̃ 0 0 0 · · ·

0 �̃�11 �̃�12 �̃�13
. . .

0 �̃�∗
12 �̃�22 �̃�23

. . .

0 �̃�∗
13 �̃�∗

23 �̃�33
. . .

...
...

...
. . .

. . .


.

Step 4: Our only interest here is to analyze the finite rank (of rank at most one) operator
�̃�𝑚,𝑚+𝑘 , 𝑚 ≥ 1, 𝑘 ≥ 2. The matrix representation in (8.4) implies

(8.5) 𝐿∗𝑚+𝑘
𝑀𝑧

𝑓0 =
1
�̄�0

(
�̄�𝑚+𝑘−1 𝑓𝑚+𝑘−1 + �̄�𝑚+𝑘 𝑓𝑚+𝑘),

and hence

(8.6) |𝑀𝑧 |−1𝐿∗𝑚+𝑘
𝑀𝑧

𝑓0 =
1
�̄�0

(�̄�𝑚+𝑘−1 |𝑀𝑧 |−1 𝑓𝑚+𝑘−1 + �̄�𝑚+𝑘 |𝑀𝑧 |−1 𝑓𝑚+𝑘).
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There are three cases to be considered:
Case I (𝑚 + 𝑘 = 𝑟 + 2): Note that 𝑏𝑟+1 = 0. Then

|𝑀𝑧 |−1𝐿∗𝑟+2
𝑀𝑧

𝑓0 =
1
�̄�0

(�̄�𝑟+2 |𝑀𝑧 |−1 𝑓𝑟+2),

by (8.6), and thus

𝐿𝑚𝑀𝑧
|𝑀𝑧 |−1𝐿∗𝑟+2

𝑀𝑧
𝑓0 =

�̄�𝑟+2

�̄�0
𝐿𝑚𝑀𝑧

|𝑀𝑧 |−1 𝑓𝑟+2

=
�̄�𝑟+2

�̄�0

���𝑎𝑟+3

𝑎𝑟+2

���𝐿𝑚𝑀𝑧
𝑓𝑟+2.

By (8.3), we have 𝑃W𝐿𝑚
𝑀𝑧
𝑓𝑟+2 = 𝑃W𝐿𝑚

𝑀𝑧
𝑓𝑚+𝑘 = 0 (note that 𝑘 ≥ 2), and hence

𝑃W𝐿𝑚𝑀𝑧
|𝑀𝑧 |−1𝐿∗𝑟+2

𝑀𝑧
𝑓0 = 0,

that is, �̃�𝑚,𝑚+𝑘 = 0. It is easy to check that the equality also holds for 𝑚 = 1.
Case II (𝑚 + 𝑘 − 1 ≥ 𝑟 + 2): In this case, 𝑏𝑚+𝑘−1 = 0 and

|𝑀𝑧 |−1 𝑓𝑚+𝑘 =

���𝑎𝑚+𝑘+1

𝑎𝑚+𝑘

��� 𝑓𝑚+𝑘 .

Again, by (8.3), we have 𝑃W𝐿𝑚
𝑀𝑧
𝑓𝑚+𝑘 = 0, 𝑘 ≥ 2, and hence in this case also �̃�𝑚,𝑚+𝑘 = 0.

Again, it is easy to check that the equality holds for 𝑚 = 1.
Case III (𝑚 + 𝑘 < 𝑟 + 2): We again stress that 𝑚 ≥ 1 and 𝑘 ≥ 2. It is useful to observe, by
virtue of (8.3) (also see (4.12)), that

𝑃W𝐿𝑚𝑀𝑧
𝑓 𝑗 =


𝑏𝑚−1
𝑎0

𝑓0 if 𝑗 = 𝑚 − 1
𝑎𝑚
𝑎0
𝑓0 if 𝑗 = 𝑚

0 otherwise.

Now set 𝑠 = 𝑚 + 𝑘 − 1. The matrix representation of |𝑀𝑧 |−1 in Lemma 8.1 implies that

|𝑀𝑧 |−1 𝑓𝑠 = 𝑐1𝑠 𝑓1 + 𝑐2𝑠 𝑓2 + · · · + 𝑐𝑠𝑠 𝑓𝑠 + 𝑐𝑠,𝑠+1 𝑓𝑠+1 + · · · + 𝑐𝑠,𝑟+1 𝑓𝑟+1.

By (8.3) and the above equality, we have

(8.7) 𝑃W𝐿𝑚𝑀𝑧
|𝑀𝑧 |−1 𝑓𝑠 = (𝑐𝑚−1,𝑠

𝑏𝑚−1

𝑎0
+ 𝑐𝑚,𝑠

𝑎𝑚

𝑎0
) 𝑓0.

Next, set 𝑡 = 𝑚 + 𝑘 . Again, the matrix representation of |𝑀𝑧 |−1 in Lemma 8.1 implies that

|𝑀𝑧 |−1 𝑓𝑡 = 𝑐1𝑡 𝑓1 + 𝑐2𝑡 𝑓2 + · · · + 𝑐𝑡𝑡 𝑓𝑡 + 𝑐𝑡 ,𝑡+1 𝑓𝑡+1 + · · · + 𝑐𝑡 ,𝑟+1 𝑓𝑟+1,

and, again, by (8.3) and the above equality, we have

(8.8) 𝑃W𝐿𝑚𝑀𝑧
|𝑀𝑧 |−1 𝑓𝑡 = (𝑐𝑚−1,𝑡

𝑏𝑚−1

𝑎0
+ 𝑐𝑚,𝑡

𝑎𝑚

𝑎0
) 𝑓0.
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It is easy to see that the equalities (8.7) and (8.8) also holds for 𝑚 = 1. The equality in (8.5)
becomes

|𝑀𝑧 |−1𝐿∗𝑚+𝑘
𝑀𝑧

𝑓0 =
1
�̄�0

(�̄�𝑠 |𝑀𝑧 |−1 𝑓𝑠 + �̄�𝑡 |𝑀𝑧 |−1 𝑓𝑡 ),

and hence, the one in (8.6) implies

𝑃W𝐿𝑚𝑀𝑧
|𝑀𝑧 |−1𝐿∗𝑚+𝑘

𝑀𝑧
𝑓0 =

1
|𝑎0 |2

[�̄�𝑠 (𝑐𝑚−1,𝑠𝑏𝑚−1 + 𝑐𝑚,𝑠𝑎𝑚) + �̄�𝑡 (𝑐𝑚−1,𝑡𝑏𝑚−1 + 𝑐𝑚,𝑡𝑎𝑚)] 𝑓0.

This shows that 𝑃W𝐿𝑚
𝑀𝑧

|𝑀𝑧 |−1𝐿∗𝑚+𝑘
𝑀𝑧

𝑓0 = 0 if and only if

�̄�𝑠 (𝑐𝑚−1,𝑠𝑏𝑚−1 + 𝑐𝑚,𝑠𝑎𝑚) + �̄�𝑡 (𝑐𝑚−1,𝑡𝑏𝑚−1 + 𝑐𝑚,𝑡𝑎𝑚) = 0.

Step 5: So far all we have proved is that �̃� is tridiagonal if and only if
(8.9)
𝑏𝑚−1 (�̄�𝑚+𝑘−1𝑐𝑚−1,𝑚+𝑘−1 + �̄�𝑚+𝑘𝑐𝑚−1,𝑚+𝑘) + 𝑎𝑚 (�̄�𝑚+𝑘−1𝑐𝑚,𝑚+𝑘−1 + �̄�𝑚+𝑘𝑐𝑚,𝑚+𝑘) = 0,

for all 𝑚 ≥ 1, 𝑘 ≥ 2 and 𝑚 + 𝑘 < 𝑟 + 2.
If 𝑚 = 1, then using the fact that 𝑏0 = 0, we have 𝑐1,𝑘+1 = − �̄�𝑘

�̄�1+𝑘
𝑐1,𝑘 , 2 ≤ 𝑘 < 𝑟 + 1, and

hence

𝑐1𝑛 = (−1)𝑛−2
∏𝑛−1

𝑖=2 �̄�𝑖∏𝑛
𝑖=3 �̄�𝑖

𝑐12 (3 ≤ 𝑛 ≤ 𝑟 + 1).

Similarly, if 𝑚 = 2, then (8.9) together with the assumption that 𝑏1 = 0 implies that

(8.10) 𝑐2𝑛 = (−1)𝑛−3
∏𝑛−1

𝑖=3 �̄�𝑖∏𝑛
𝑖=4 �̄�𝑖

𝑐23 (4 ≤ 𝑛 ≤ 𝑟 + 1).

Next, if 𝑚 = 3, then (8.9) again implies

𝑏2 (�̄�𝑘+2𝑐2,𝑘+2 + �̄�𝑘+3𝑐2,𝑘+3) + 𝑎3 (�̄�𝑘+2𝑐3,𝑘+2 + �̄�𝑘+3𝑐3,𝑘+3) = 0 (𝑘 < 𝑟 − 1).

On the other hand, by (8.10), we have 𝑐2,𝑘+3 = − �̄�𝑘+2
�̄�𝑘+3

𝑐2,𝑘+2, and hence

�̄�𝑘+2𝑐3,𝑘+2 + �̄�𝑘+3𝑐3,𝑘+3 = 0,

which implies

𝑐3,𝑘+3 = − �̄�𝑘+2

�̄�𝑘+3
𝑐3,𝑘+2 (𝑘 < 𝑟 − 1).

Now, evidently the recursive situation is exactly the same as that of the proof of Theorem
5.2 (more specifically, see (5.2)). This completes the proof of the theorem.

As is clear by now, by virtue of Theorem 5.2, the classification criterion of the above
theorem is also a classification criterion of tridiagonality of standard Aluthge kernels.
Therefore, we have the following:

Corollary 8.4. If H𝑘 is a truncated space, then the Shimorin-Aluthge kernel of 𝑀𝑧 is
tridiagonal if and only if the standard Aluthge kernel of 𝑀𝑧 is tridiagonal.
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9. Final comments and results

First we comment on the assumptions in the definition of truncated kernels (see Section
8). The main advantage of the truncated space corresponding to a truncated kernel is that
𝐹 = 0, where 𝐹 is the finite rank operator as in (7.3). In this case, as already pointed out, we
have 𝐿�̃�𝑧

= |𝑀𝑧 |
1
2 𝐿𝑀𝑧

|𝑀𝑧 |−
1
2 . This brings a big cut down in computation. On the other

hand, quite curiously, if
𝑏0 = 𝑏1 = 1 or 𝑏0 = 1,

and all other 𝑏𝑖’s are equal to 0, then the corresponding standard Aluthge kernel of 𝑀𝑧 is
tridiagonal kernel but the corresponding Shimorin-Aluthge kernel of𝑀𝑧 is not a tridiagonal
kernel. Since computations are rather complicated in the presence of 𝐹, we only present
the result for the following (convincing) case:

Example 9.1. Let 𝑎𝑛 = 𝑏0 = 𝑏1 = 1 and 𝑏𝑚 = 0 for all 𝑛 ≥ 0 and𝑚 ≥ 2. Let H𝑘 denote the
tridiagonal space corresponding to the basis {(𝑎𝑛 + 𝑏𝑛𝑧)𝑧𝑛}𝑛≥0. By (2.8) and Theorem
3.4, we have

[𝑀𝑧] =



0 0 0 0 0 · · ·

1 0 0 0 0
. . .

0 1 0 0 0
. . .

0 1 1 0 0
. . .

0 0 0 1 0
. . .

...
...

...
...

. . .
. . .


and [𝐿𝑀𝑧

] =



0 1 0 0 0 0 · · ·

0 0 1 0 0 0
. . .

0 0 −1 1 0 0
. . .

0 0 0 0 1 0
. . .

...
...

...
...

...
. . .

. . .


,

respectively. Hence, applying 𝐿𝑀𝑧
𝐿∗
𝑀𝑧

= |𝑀𝑧 |−2 (see Lemma 2.6) to this, we obtain

|𝑀𝑧 |−2 =



1 0 0 0 0 · · ·

0 1 −1 0 0
. . .

0 −1 2 0 0
. . .

0 0 0 1 0
. . .

...
...

...
. . .

. . .


.

Suppose 𝛼 = 3+
√

5
2 and 𝛽 = 3−

√
5

2 . It is useful to observe that (1 − 𝛼) (1 − 𝛽) + 1 = 0. Set[
𝑎 𝑏

𝑏 𝑐

]
=

[
1 −1
−1 2

] 1
2

,

where 𝑎 = 1√
5
[
√
𝛼(1 − 𝛽) −

√
𝛽(1 − 𝛼)] and 𝑏 = 1√

5
[−
√
𝛼 +

√
𝛽], and 𝑐 = 1√

5
[−
√
𝛼(1 −

𝛼) +
√
𝛽(1 − 𝛽)]. Clearly

|𝑀𝑧 |−1 =


1 0 0 0
0 𝑎 𝑏 0
0 𝑏 𝑐 0
0 0 0 𝐼

 .
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From this it follows that |𝑀𝑧 | 𝑓0 = 𝑓0, and hence the finite rank operator 𝐹, as in (7.3), is
given by

𝐹𝑔 = ⟨𝑔, 𝑓0⟩H𝑘

(
(𝑀∗

𝑧 |𝑀𝑧 |𝑀𝑧)−1𝑀∗
𝑧 |𝑀𝑧 | 𝑓0

)
= 0 (𝑔 ∈ H𝑘).

Then 𝐹 = 0, and hence (7.2) implies that 𝐿�̃�𝑧
= |𝑀𝑧 |

1
2 𝐿𝑀𝑧

|𝑀𝑧 |−
1
2 . By (8.2) (also see Step

1 in the proof of Theorem 8.3), the coefficient of 𝑧𝑚�̄�𝑛 of the Shimorin-Aluthge kernel �̃� is
given by �̃�𝑚𝑛 = |𝑀𝑧 |

1
2 𝑃W𝐿𝑚

𝑀𝑧
|𝑀𝑧 |−1𝐿∗𝑛

𝑀𝑧
|W , 𝑚, 𝑛 ≥ 0. We compute the coefficient of 𝑧�̄�3

as

𝑃W𝐿𝑀𝑧
|𝑀𝑧 |−1𝐿∗3

𝑀𝑧
𝑓0 = 𝑃W𝐿𝑀𝑧

|𝑀𝑧 |−1𝐿∗2
𝑀𝑧
𝑓1

= 𝑃W𝐿𝑀𝑧
|𝑀𝑧 |−1𝐿∗𝑀𝑧

𝑓2

= 𝑃W𝐿𝑀𝑧
|𝑀𝑧 |−1 (− 𝑓2 + 𝑓3)

= 𝑃W𝐿𝑀𝑧
(−𝑏 𝑓1 − 𝑐 𝑓2 + 𝑓3)

= 𝑃W𝐿𝑀𝑧
(−𝑏 𝑓1)

= −𝑏 𝑓0.

But 𝑏 = 1√
5
[−
√
𝛼 +

√
𝛽] ≠ 0, and hence �̃�13 ≠ 0. This implies that the Shimorin-Aluthge

kernel is not tridiagonal. On the other hand, the matrix representation of |𝑀𝑧 |−1 implies
right away that the standard Aluthge kernel is tridiagonal (see Theorem 5.2).

Now we return to standard Aluthge kernels of shifts (see the definition following The-
orem 7.7). Let H𝑘 ⊆ O(D) be a reproducing kernel Hilbert space. Suppose 𝑀𝑧 on H𝑘

is left-invertible. Then Theorem 7.7 says that �̃�𝑧 and 𝑀𝑧 on H�̃� (⊆ O(D)) are unitarily
equivalent, where

�̃� (𝑧, 𝑤) := ⟨|𝑀𝑧 |−1𝑘 (·, 𝑤), 𝑘 (·, 𝑧)⟩H𝑘
=

(
|𝑀𝑧 |−1𝑘 (·, 𝑤)

)
(𝑧),

for all 𝑧, 𝑤 ∈ D. In the following, as a direct application of Theorem 5.2, we address the
issue of tridiagonal representation of the shift 𝑀𝑧 on H𝑘 .

Corollary 9.2. In the setting of Theorem 7.7, assume in addition that E = C and H�̃� is
a tridiagonal space with respect to the orthonormal basis { 𝑓𝑛}𝑛≥0, where 𝑓𝑛 (𝑧) = (𝑎𝑛 +
𝑏𝑛𝑧)𝑧𝑛, 𝑛 ≥ 0. Then H𝑘 is a tridiagonal space if and only if

𝑈 |𝑀𝑧 |𝑈∗ =



𝑐00 𝑐01 − 𝑏1
𝑎2
𝑐01

�̄�1 �̄�2
�̄�2 �̄�3

𝑐01 . . .

𝑐01 𝑐11 𝑐12 − �̄�2
�̄�3
𝑐12

. . .

− 𝑏1
𝑎2
𝑐01 𝑐12 𝑐22 𝑐23

. . .

𝑏1𝑏2
𝑎2𝑎3

𝑐01 − 𝑏2
𝑎3
𝑐12 𝑐23 𝑐33

. . .

...
...

...
. . .

. . .


,

with respect to the basis { 𝑓𝑛}𝑛≥0.
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Proof. Recall from Theorem 7.7 thatH�̃� = |𝑀𝑧 |−
1
2 H𝑘 and𝑈ℎ = |𝑀𝑧 |−

1
2 ℎ, ℎ ∈ H𝑘 , defines

the intertwining unitary. Set 𝑃 := 𝑈 |𝑀𝑧 |𝑈∗. Then 𝑃 ∈ B(H�̃�) is a positive operator, and
for any 𝑧, 𝑤 ∈ D, we have

⟨𝑃�̃� (·, 𝑤), �̃� (·, 𝑧)⟩H�̃�
= ⟨|𝑀𝑧 |𝑈∗ �̃� (·, 𝑤),𝑈∗ �̃� (·, 𝑧)⟩H𝑘

= ⟨|𝑀𝑧 | |𝑀𝑧 |−
1
2 𝑘 (·, 𝑤), |𝑀𝑧 |−

1
2 𝑘 (·, 𝑧)⟩H𝑘

= ⟨𝑘 (·, 𝑤), 𝑘 (·, 𝑧)⟩H𝑘
,

as𝑈
(
|𝑀𝑧 |−

1
2 𝑘 (·, 𝑤)

)
= �̃� (·, 𝑤). Hence 𝑘 (𝑧, 𝑤) = ⟨𝑃�̃� (·, 𝑤), �̃� (·, 𝑧)⟩H�̃�

, 𝑧, 𝑤 ∈ D. The result
now follows from Theorem 5.2.

In particular, if �̃� is a tridiagonal kernel, then for 𝑘 to be a tridiagonal kernel, it is
necessary (as well as sufficient) that𝑈 |𝑀𝑧 |𝑈∗ is of the form as in the above statement.

We conclude this paper with the following curious observation which stems from the
matrix representations of Shimorin left inverses of shifts on analytic tridiagonal spaces
(see Theorem 3.4). Let H𝑘 be an analytic tridiagonal space. Recall that 𝐿𝑀𝑧

denotes the
Shimorin left inverse of 𝑀𝑧 . By Lemma 2.6, we have |𝑀𝑧 |−2 = 𝐿𝑀𝑧

𝐿∗
𝑀𝑧

. From the matrix
representation of 𝐿𝑀𝑧

in Theorem 3.4, one can check that the matrix representation of
|𝑀𝑧 |−2 satisfies the conclusion of Theorem 5.2. Consequently, the positive definite scalar
kernel

𝐾 (𝑧, 𝑤) = ⟨|𝑀𝑧 |−2𝑘 (·, 𝑤), 𝑘 (·, 𝑧)⟩H𝑘
(𝑧, 𝑤 ∈ D),

is a tridiagonal kernel. On the other hand, consider

𝑎𝑛 =

{
2 if 𝑛 = 2
1 otherwise,

and 𝑏𝑛 =

{
1 if 𝑛 = 2
0 otherwise.

Then the shift 𝑀𝑧 on the analytic tridiagonal space H𝑘 corresponding to the orthonormal
basis { 𝑓𝑛}𝑛≥0, where 𝑓𝑛 (𝑧) = (𝑎𝑛 + 𝑏𝑛𝑧)𝑧𝑛, 𝑛 ≥ 0, is left-invertible. However, a moderate
computation reveals that the matrix representation of |𝑀𝑧 |−1 does not satisfy the conclusion
of Theorem 5.2. In other words, the positive definite scalar kernel

𝐾 (𝑧, 𝑤) = ⟨|𝑀𝑧 |−1𝑘 (·, 𝑤), 𝑘 (·, 𝑧)⟩H𝑘
(𝑧, 𝑤 ∈ D),

is not a tridiagonal kernel.
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